

Electromagnetic multiple-disc brake Type 512

POWER > SPEED > TORQUE

Electromagnetic multiple-disc brake - Type 512

Characteristics and features

- suitable for torque transmission with increasing differential speed between the drive elements
- high torque transfer despite compact dimensions
- designs up to 1600 Nm possible
- particulary suitable for shifting operations with a high energy exchange
- negligible wear due to special friction lining
- only oil running
- maintenance free
- suitable for applications in harsh environments
- reduced shift speeds due to adapted control
- also available as electromagnetic multiple-disc brake

Mönninghoff power transmission represents an infinite variant diversity that is applied by all areas of modern mechanical engineering.

Our technologies are mostly designed to operate under extreme conditions. We offer high precision products for medical robotics, fail-proof security for aerospace technology or synchronization soultions for the packaging or printing industry.

We thus address customers who have the highest standards for their own machines or systems. To them, we can offer highly complex, application-specific solutions.

Electromagnetic multiple-disc brake - Type 512

Match code

Mönninghoff multiple-disc brakes are indicated by the following match code:

512 . A . B

A brake size

B design

Other individual characteristics:

- voltage
- bore size with keyway

According to these characteristics, we design individual solutions concerning transmitted torque, engaging behavior or rotation speed.

Our engineers can assist with finding an application-specific brake at any time. Together, we can develop individual and innovative solutions for extreme operating conditions.

Ordering example

Mönninghoff electromagnetic multiple-disc brake Type 512.21.1.1

Operating mode Voltage Bore size d dry running 24 Vdc 30 mm H7, keyway acc to. DIN 6885/1

Electromagnetic multiple-disc brake - Type 512

Brake size

The selection of the correct size of a Mönninghoff electromagnetic multiple-disc brake is determined by the requiered torque as well as the shift work.

• According to the required torque

$$M_{\rm S} \geq M_{\rm erf}$$

• According to the shift work

 $\mathsf{E}_{_{h}} \leq \mathsf{Q}_{_{h}}$

The brake must transfer load and acceleration torque (M_L ; M_b). The required safety is obtained by using a corresponding safety factor (K).

$$M_{erf} = (M_{b} \pm M_{L}) \cdot K$$

$$M_{b} = \frac{I \cdot \Delta n}{9,55 \cdot t} \quad [Nm]$$

$$Q_{h} = Q \cdot k_{1} \cdot k_{2} \quad [Nm]$$

$$E_{h} = \frac{I \cdot (\Delta n)^{2} \cdot Z}{182.4} \quad [Nm]$$

If the load and acceleration torque cannot be determined, the required torque can be derived from the driving power, taking the required safety into cosideration.

$$M_{erf} = 9550 \cdot \frac{P}{n} \cdot K$$
 [Nm]

Ρ

К

Ζ

t

$$\begin{split} M_{erf} &= required \ torque \\ M_{b} &= acceleration \ torque \\ M_{s} &= shift \ torque \\ M_{L} &= output \ load \ torque \\ n &= speed \ of \ rotations \ [min^{-1}] \end{split}$$

- Δn = differential speed of rotations [min⁻¹]
- $k_1 = correction factor$
- k_{p} = correction factor

- = driving power [kW]
- = safety factor [1,2 to 4]
- = moment of inertia [kgm²]
- = number of shift operations per hour
- Q = amount of heat
- E_h = shift energy per hour [Nm]
 - = acceleration time [sec]

based on t_1

Electromagnetic multiple-disc brake - Type 512

Determination of shift work

The energy that is lost in the brake depends on the shift curve and the shift frequency. The correction factors for the permissible shift work per hour Q_h can be derived from the tables and graphs.

Course of a shift cycle

- t_{g} = time during which the brake is closed
- t_z = total cycle time
- $\Delta \omega$ = differential angular velocity

Correction factor $\boldsymbol{k}_{\scriptscriptstyle 1}$ as a function of the shift frequency per hour

V valid for all sizes and types of brakes whose discs are surrounded by the field of force

Correction factor $k_{\rm 2}$ as function $t_{\rm a}/t_{\rm z}$

Amount of heat Q as function of the amount of cooling oil; valid for brakes whose discs are surrounded by the field of force

Electromagnetic multiple-disc brake - Type 512

Switching

Electromagnetic brakes are inductances. Engagement and disengagement are subject to the laws of induction, i. e. the induction current increases according to an e-function.

Shift speeds

Shift diagram: normal shifting

- t_1 and t_2 can be electrically influenced by taking appropriate measures
- it is advisable to use direct current for shifting
- when determining the size, the engage time is considered to be approximately 30% of the total acceleration time, which normally results in additional safety

Technical data

Size			16	21	22	24	26	28	
shift speeds acc. to VDE 0580:2011-11	t,	[msec]	220/140	250/160	360/250	450/330	600/450	900/600	normal excitation (fast excitation
	t ₂		70/60	90/80	110/100	200/180	250/220	400/350s	3 times)

- i = induction current
- $M_{\ddot{u}}$ = torque to be transferred / static torque
- M_s = torque to be shifted

- t₁ = engage time
- t₂ = disengage time
- t₁₁ = response delay

Electromagnetic multiple-disc brake - Type 512

Brake Size

Type 512 for oil running

Size			12	15	21	22	24	28
torque		M dvn [Nml 25	60	120	250	480	960
max. speed		î,	in ⁻¹] 3000	3000	2400	2000	2000	2000
input power			[W] 18	30	30	45	66	88
voltage			[V] 24	24	24	24	24	24
inertia		[10 ⁻³ kd		0.5	1 45	4.8	50.3	86.3
weight				2	3.5	6.5	9.3	16.7
number of plates	inner plates		1,E	5	5	5	6	6
	outer plates		4	5	5	5	6	6
dimensions		D í		114	134	166	195	240
		d ^{ke}	- 35	55	68	75	90	110
		d,	42	45	60	65	80	100
		d	85.5	95	120	150	178	218
		d,	56	75	90	100	116	145
		4 d ₋	M6	MB	M8	M10	M10	M12
		Ĺ	38	49.5	55	58.5	69	80
		+0,2	20	22	22	25	28	32
		L,	22	27	29	30	34	40
		l _a	5	8	8	10	12	18
1		l _a	6	12	13	12,5	12,5	15,5
. <u>arr</u>		- I ₄	63.5	69,5	80	95	109	129
+ 20		I ₅	25	30	32	33	37	43
		6 ^{+0,1}	2,5	5	5	6	6	6
		L_H7 7	12	14	16	20	20	25
		I ₈	1,2	1,8	2	2,5	3,5	5
╧╫┼╫╧			· ;=		1		I	

Technical Data

Electromagnetic multiple-disc brake - Type 512

Inner driver

Gear specifications acc. to DIN 867

Index 1: design 1 and 2 possesse 28 teeths Index 2: design 3 possesses 31 teeths

- the surface hardness of the driver is
 59 62 HRc
- case depth can vary from 0,2 to 0,6 mm

- z = number of teeth
- m = module
- d_0 = reference diameter (= z·m)

- d_v = outside diameter
- d_f = root diameter
- α_0 = pressure angle (= 20°)

Technical data

Size			12	15	21	21	22	24	28
index					1	2			
number of teeth	z		27	27	28	31	27	33	42
module	m		1,5	1,75	2	2	2,5	2,5	2,5
outside diameter	d _{k- 0,2}	[mm]	43,3	50,5	60,5	66,4	73,2	88,2	110,0
root diameter	d _f	[mm]	37,65	43,96	52,64	58,68	63,40	78,40	98,15
tooth width	Wn _{-o,o6}	[mm]	16,37	19,11	22,01	22,10	27,51	27,72	34,48
number of measuring teeth over "n" teeth	4	4	4	4	4	4	5		
profile displacement	x	[mm]	+0,3	+0,31	+0,41	+0,42	+0,43	+0,43	-0,12
tooth length	l _{zmin}	[mm]	12	18,5	21,5	21,5	23,5	30	33,0

Electromagnetic multiple-disc brake - Type 512

Voltage

- standard voltage is 24 Vdc dirrect current
- special voltages as a example 48 Vdc on request

Technical characteristic

- must run in oil
- the arrangement of the discs between the pole faces and the armature requires the discs to be made of a ferromagnetic material with good friction and wear properties, which are obtained by hardening and nitriding
- residual magentism resulting from the hardening process is eliminated by the special design of the discs
- the shape of the discs prevents the oil from building up when the temperature drops, thus avoiding shift delays
- brakes whose discs are surrounded by the field of force are paritculary suitable for shifting operations with a high energy exchange
- require no maintenance

At a glance

System solutions

You need more?

Mönninghoff clutches can be combined with a variety of many other power transmission elements. Such complex high-tech systems can solve any application-specific tasks and can fulfill any customer-specific wishes.

In many cases, a combination of different drive elements is needed to solve the applications particular problems and difficulties. Being not just supplier but technological partner to our customers, our extensive engineering is part of extraordinary and challenging power transmission projects.

Our product is the know-how, with hardware as an added bonus.

Driven by excellence

Why Mönninghoff

- intensive dialog with our customers' engineers •
- decades of experience and competence
- deep understanding for all areas of mechanical engineering
- highly modern and flexible machine park •
- enthusiasm for quality •
- flexibility, inventiveness and communication skills of our employees
- commitment to Germany and Bochum as industrial location •

Helps you find a customer-specific power transmission solution for extraordinary circumstances.

For the competent processing and smooth handling of your orders and delivery dates.

Feels committed to protect and preserve the high value of your machine and to secure its availability.

WA LOCATIONS

Unit 1 / 45 Inspiration Drive, Wangara WA 6065 (08) 9303 4966

Unit 16 / 51-53 Kewdale Road, Welshpool WA 6106 (08) 6314 1155 support@chainanddrives.com.au

NSW LOCATION

Unit 7 / 70 Holbeche Road, Arndell Park NSW 2148 (02) 9674 8611 salesnsw@chainanddrives.com.au

