

Wichita Clutch

Wichita Clutch, founded in 1949, is a leading global designer and manufacturer of heavy-duty clutches and brakes that are essential components in industrial process equipment. Backed by extensive application experience, Wichita engineers utilize the latest design technologies and materials to provide innovative clutch and brake solutions that precisely meet their customer's most demanding requirements.

A full range of Wichita solutions, including hydraulic clutches and brakes, air clutches, air brakes, water-cooled clutches and brakes, and fluid couplings, are used extensively around the world by major OEMs in metalworking, steel, marine, pulp & paper, material handling, mining, and energy.

VISIT US ON THE WEB AT

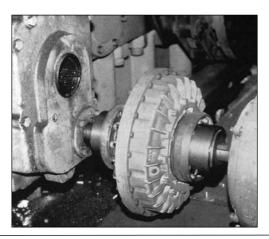
WWW.WICHITACLUTCH.COM

Altra Industrial Motion

Altra is a leading global designer and manufacturer of quality power transmission and motion control products utilized on a wide variety of industrial drivetrain applications. Altra clutches and brakes, couplings, gearing and PT component product lines are marketed under the industries most well known manufacturing brands. Each brand is committed to the guiding principles of operational excellence, continuous improvement and customer satisfaction. Highly-engineered Altra solutions are sold in over 70 countries and utilized in a variety of major industrial markets, including food processing, material handling, packaging machinery, mining, energy, automotive, primary metals, turf and garden and many others.

Altra's leading brands include **Ameridrives**, **Bauer** Gear Motor, **Bibby** Turboflex, **Boston** Gear, **Delroyd** Worm Gear, **Formsprag** Clutch, **Guardian** Couplings, **Huco**, **Industrial** Clutch, **Inertia** Dynamics, **Kilian**, **Lamiflex** Couplings, **Marland** Clutch, **Matrix**, **Nuttall** Gear, **Stieber**, **Stromag**, **Svendborg** Brakes, **TB Wood's**, **Twiflex**, **Warner** Electric, **Warner** Linear and **Wichita** Clutch.

VISIT US ON THE WEB AT **ALTRAMOTION.COM**



Wichita Mesur-Fil Fluid Couplings

Wichita Mesur-Fil Fluid Couplings deliver reliable smooth power transmission. To consistently deliver, we select only from the highest quality materials. Our manufacturing and product assembly are completed under the most exacting guidelines and established procedures. The result is unquestioned consistent product dependability.

Mesur-Fil Fluid Couplings are rated for motors up to 50 HP. They have earned a reputation for providing smooth, soft starts while reducing current draw on the motor by 33%.

Mesur-Fil Fluid Couplings are ideally suited for direct drive applications between electric motors and gear boxes.

Typical Applications

Bulk Material Handling Equipment and Mining Related Industries:

Conveyors of all types

Crushers

Excavators

Fans

Mills

Mixers

Pumps

Screening Plants

Petrochem and Chemical Processing:

Agitators

Blowers/Fans

Centrifuges

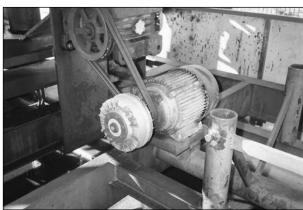
Compressors

Mixers

Pumps

Other Applications include:

Amusement park rides


Construction

Machine tools

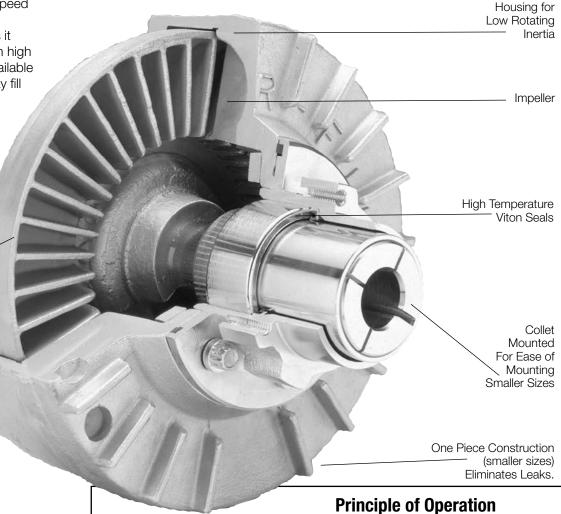
Oil Field

Power Generation

Ski resort chair lifts

Mesur-Fil 7.0 HSD allows shock-free acceleration on large inertia loads.

Picture Courtesy of Torpey Denver, Inc.


Mesur-Fil 7.0 HSD on amusement park ride, "Speed Boats," giving cushioned, smooth starts.

Picture Courtesy of Torpey Denver, Inc.

All Aluminum

Design Avantages

Mesur-Fil Fluid Couplings allow motors to start unloaded and to reach operating speed with smooth,controlled acceleration. This makes it ideal for applications with high inertia loads. They are available in either constant or delay fill versions.

Benefits

Runner

Mesur-Fil Fluid Couplings offer several advantages:

- Reduced energy consumption
- Jam/overload protection
- Shock load cushioning
- No metal-to-metal contact
- Wide range of available mounting options
- High temperature Viton seals
- Available from over 700 Formsprag Authorized Distributors.

Fluid

There are three primary components to Mesur-Fil Fluid Couplings:

Runner

- 1. Vaned runner
- 2. Vaned impeller
- 3. Fluid fill

Torque, produced by the prime mover (motor) acting on a vaned runner, is transmitted through the flow of fluid into

the chambers formed by the two coupling halves. The oil (fluid) is sub sequently thrown into the vanned impeller connected to the load causing it to turn. It is important to note, that as this trans mission of power takes place, there is virtually no wear on the transmitting parts be cause there is no mechanical contact between them.

Vanned Impeller

Fluid Requirements

Figure 2 reveals a typical NEMA B electric motor torque curve together with the particular operating characteristics of a specific coupling with a designated fill level. With no power supplied, all of the fluid is settled at the bottom of the coupling. Slip rate in this condition is 100% with the input free to turn. With the motor starting and increasing in speed to the breakdown point, torque builds in the coupling. As torque increases, the coupling begins to deliver the load to the motor, eventually bringing the load up to speed (refer to the load acceleration area in Figure 2).

The area on the chart between the motor torque curve and the 100% slip curve represents the excess torque available to the motor to start itself without also having to start the load. It is this operating characteristic which permits a soft start with a one third lower current draw on the motor (see Figure 3). (It should be noted that because the coupling torque can only be developed if the runner is turning at a slower speed than the impeller, an ideal small amount of slip of 3% to 5% is necessary). The Mesur-Fil Fluid Coupling provides for jam load protection to the motor and other vital power system components. It is designed to allow the motor to decelerate only to its breakdown point (see Figure 4). The results without the fluid coupling could be a locked rotor condition, resulting in excessive current draw and potential motor damage. Additionally, the coupling distributes the shock of an overload over a longer time span, thus reducing the possibility of damage.

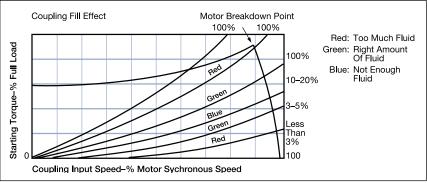


Figure 1 - Motor Breakdown Points

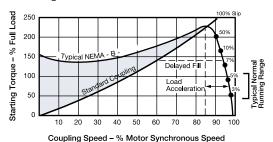


Figure 2 - Starting Torque

Typical NEMA B Motor

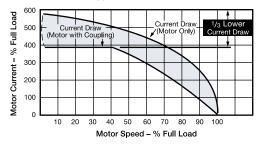


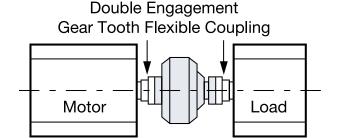
Figure 3 - Start-up Burnout Protection

Typical NEMA B Motor Typical New Typi

Figure 4 - Jam Load Burnout Protection

Mounting Types per Size

Mounting Type	7.0*	9.4*	12.4*	Mounting Application			
HC (Refer to P-1100-WC, page 168)	•	•	•	Basic coupling for custom input & output			
HCM (Refer to P-1100-WC, pages 170-171)	•	•	•	For use with flexible gear couplings			
HBM (Refer to P-1100-WC, page 169)	•	•	•	Shaft to shaft applications For stub shaft input/output sizes 7-12.4			
HSD (Refer to P-1100-WC, pages 172-173)	•	•	•	Parallel, QD sheave application			

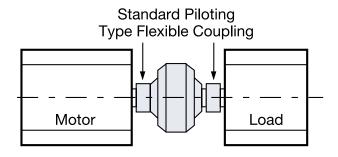

^{*}Modular design (See page 167)

Modular Design Concept

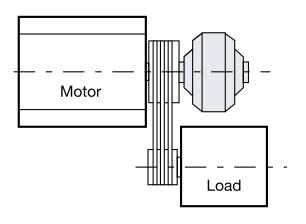
Sizes 7.0, 9.4, 12.4

Configuration

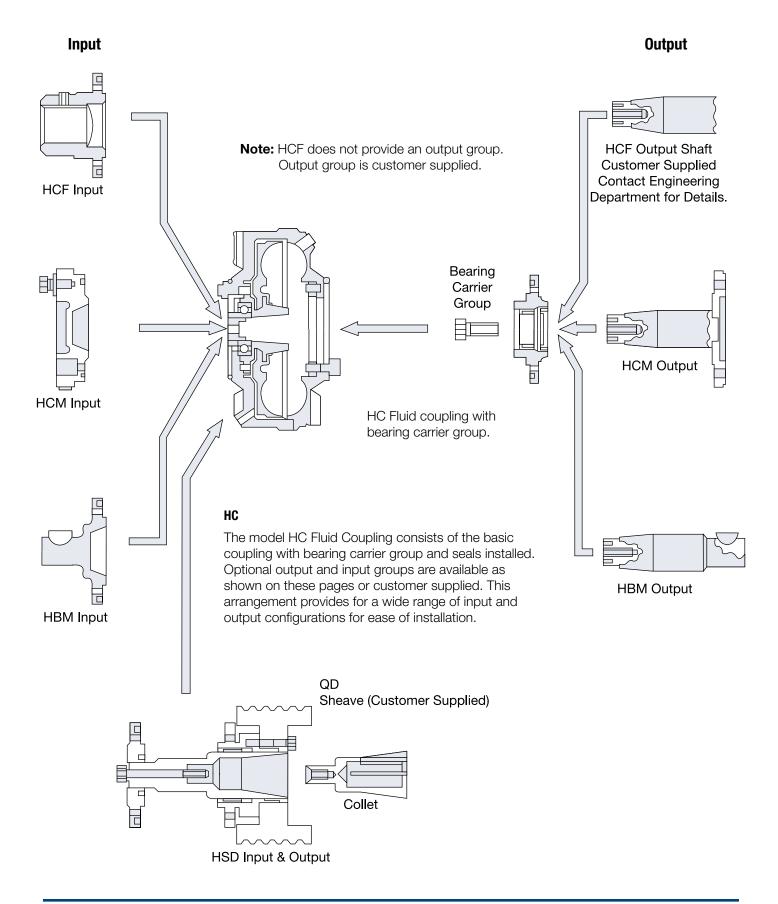
HCF


Consists of Model HC and input group. The input group is finish bored to fit standard NEMA B motor shafts. The optional output groups available (HCM, HBM) are shown on this page or the HCF output group must be supplied by the customer. Consult engineering for details.

HCM


The Model HCM Fluid Coupling is a complete unit with both input and output flanges. It is intended for installaion between two halves of a double engagement gear tooth flexible coupling which is customer supplied.

HBM Sizes


This coupling is a complete unit with a straight input and output shaft. It is installed between two piloting type flexible couplings supplied by the customer.

HSD

The Model HSD Fluid Coupling consists of a basic fluid coupling, input and output group, and a standard customer supplied QD type sheave. Hydro-sheave couplings provide minimal overhung loads for parallel (belt-driven) applications. The sheave is mounted on a coupling installed on the end of a drive shaft.

Mesur-Fil Couplings can be installed very quickly and easily utilizing a slotted collet for mounting on the motor shaft instead of the center bolt that is most commonly used with other sheave drives. Unlike the center bolt, the slotted collet requires no drilling and tapping of the end of the motor shaft. The slotted collet is finished bored to fit standard NEMA B motor shaft dimensions. Available bore sizes are found elsewhere in this brochure.

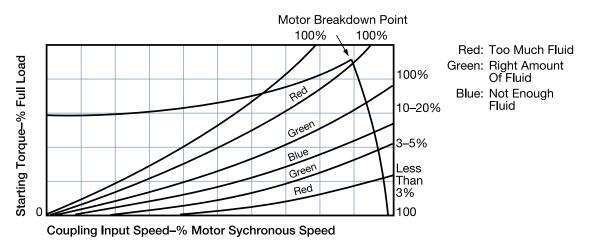
Selection and Sizing

Fill Levels (NEMA B Motors)

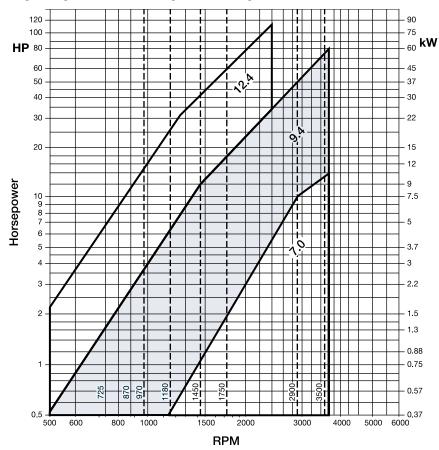
The Quick Selection Chart (see Figure 8) provides the correct size coupling and fill level for any standard NEMA B motor within the Mesur-Fil range. It also provides the slip rate that can be anticipated at normal operating speed. Having the correct amount of oil in the coupling is extremely critical to ensure safe and proper operation. Figure 9 shows the effects of either too much or too little fluid. With an optimum amount of fluid, the breakdown point of the motor with the 100% slip line of the coupling provide the best combination of soft start with slip rate at normal speed. With too much fluid (red area), the slip rate is lower and the start is harder. With too little fluid (blue area), the start will be softer but the slip rate will be much higher. This can cause heat dissipation problems, and, in extreme situations, the coupling may completely fail to move the load.

A choice of fluids is also available. In a normal environment, petroleum oil is the best fluid to use. For hazardous conditions such as those encountering dust, paint spray, etc., a special fire-resistant fluid may be required.

Figure 8 - Quick Selection Chart


	1:	200 RP	И	1	800 RP	М		
HP	Cplg.	Fill	%	Cplg.	Fill	%	HP	KW
	Size	No.	Slip	Size	No.	Slip		
1/2	7.0	12	6	7.0	8	3	1/2	0.38
3/4	9.4	8	3	7.0	8	4	3/4	0.56
1	9.4	8	3	7.0	9	4	1	0.75
1 1/2	9.4	8-1/2	3	7.0	11	5	1-1/2	1.1
2	9.4	9	4	7.0•	12	6	2	1.5
3	9.4	10	5	9.4	8	2	3	2.2
5	12.4	7	3	9.4	8-1/2	3	5	3.8
7 1/2	12.4	8	2-1/2	9.4	9	3	7-1/2	5.6
10	12.4	9	4	9.4	10	4-1/2	10	7.5
15	12.4	11	5	12.4	7	3	15	11.3
				12.4	8	2-1/2	20	15.0
				12.4	8-1/2	3	25	18.8
				12.4	9	3-1/2	30	22.5
				12.4	10	4	40	30.0
				12.4	11	5	50	37.5

• **Caution!** 7% or higher slips may cause over-heating if coupling is cycled too rapidly.


For minimum operating temperature below - 10° F, consult the factory.

Note: For vertical mounting order unit with both the standard and optional fill plugs on both sides of the unit.

Figure 9 - Coupling Fill Effect

Input Speed vs. Horsepower Graph

Fluid quantities (fluid oz)

	Fluid Quantities Fill Number											
Size	7	8 9		10	11	12						
7.0		18.5	21	23	23.5	27.6						
9.4		43	49	54	60	65						
12.4	87	100	112	125	138	150						

Overload Protection

Fusible plug

In overload conditions, as the slip increases and the oil temperature rises, seals become damaged and begin to leak. In order to avoid this damage, in critical applications, it is advisable to install a fusible plug instead of a solid plug. Overload protection. For sizes 7.0 to 12.4 a 250° F fusible plug is available only as an option.

Fluid Recommendation

Oil: SAE 10W

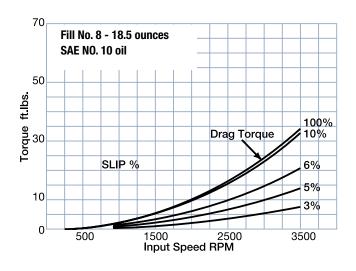
(Spec. MIL-L-2104 B)

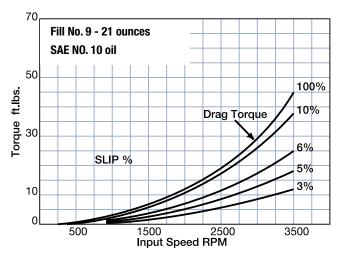
Chevron: Hydraulic Oil EP 32 Shell: Tellus 32

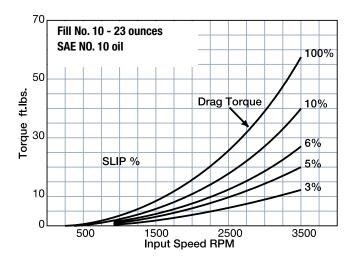
Shell: Tellus 32
Texaco: Rando HD 32

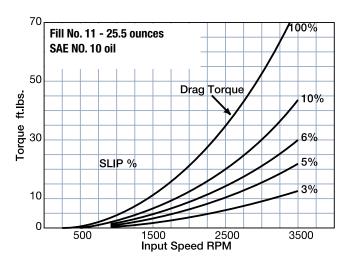
Esso: Nuto H 32 Mobil: DTE 24

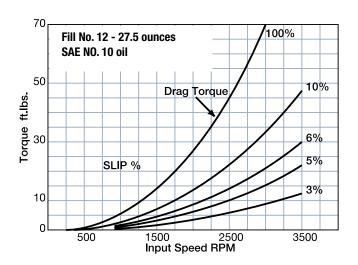
Total: Azolla ZS 32

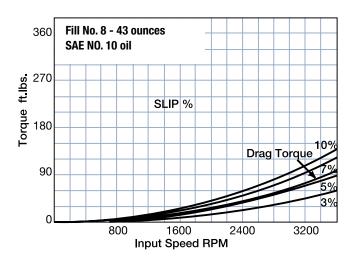

Fire Resistant Fluid

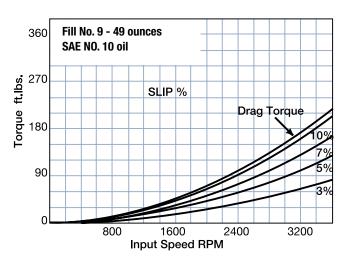

Fyrquel: 220


Slip Curves

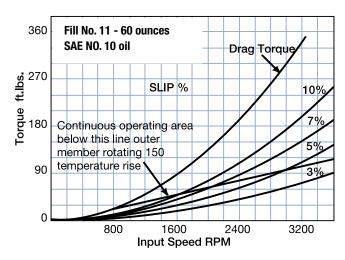

Size 7.0

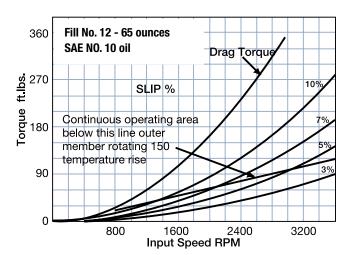

Maximum speed 3,600 RPM (All configurations)

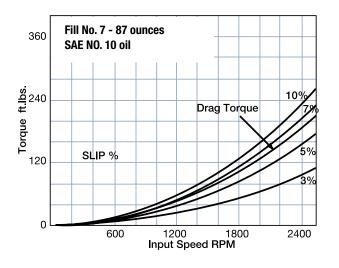


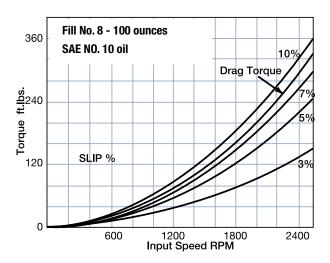


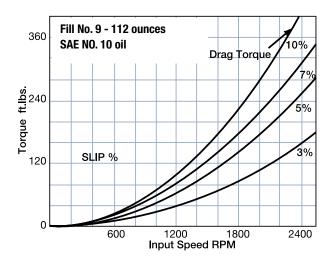
Slip Curves

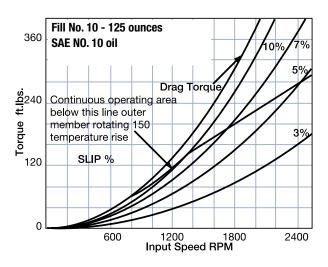

Size 9.4

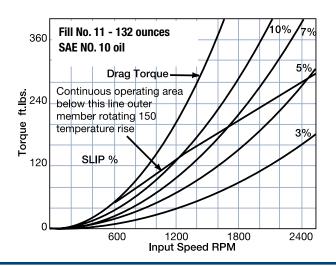

Maximum speed 3,600 RPM Except HSD-Max 2,600 RPM

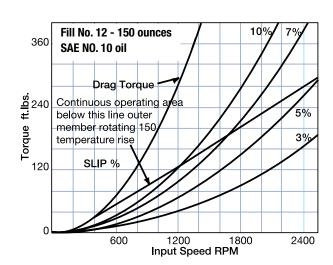


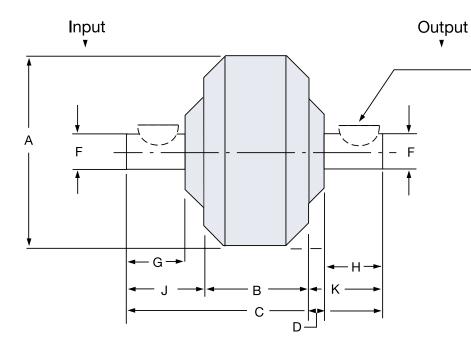



Slip Curves


Size 12.4


Maximum speed 2,400 RPM Except HSD-Max. 1,800 RPM



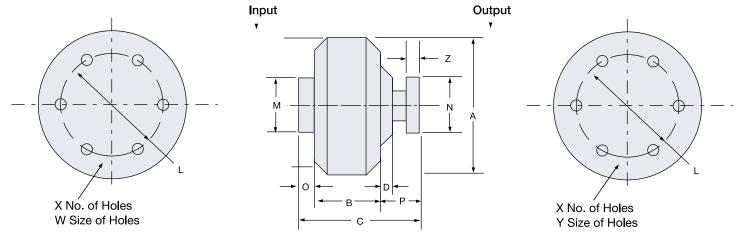


Model HBM (Shaft-to-Shaft Application)

Size 7.0-12.4

Keyway size both sides 7.0 # 91 Woodruff 9.4 # 15 Woodruff 12.4 TX Woodruff

Size	Assembly Number
7.0	6-607-004-000-0000
9.4	6-609-004-000-0000
12.4	6-612-004-000-0000
3/8" NPT	4-619-068-000-0
Fusible Plug	

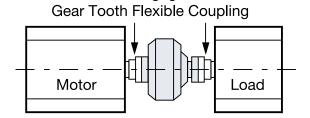

Dimensions: inches

Size	A	В	C	D	F	G	Н	J	K	Wt. lb. Less Oil	Max oz.
7.0	7.81	3.67	8.25	.560 .999	1.000	1.62	1.62	2.34	2.24	12.65	27.6
9.4	10.25	4.70	10.89	.770 1.249	1.250	2.06	2.12	3.10	3.09	27.70	65
12.4	13.50	5.98	13.67	.820 1.624	1.625	2.12	2.75	3.88	3.88	51.07	150

Single Flexing Coupling								
7.0	AJ15*							
9.4	AJ30*							
12.4	AJ30*							

^{*}Refers to TB Wood's Form-Flex couplings

Model HCM (Flexible Gear Couplings with Shrouded Bolts) Size 7.0-12.4



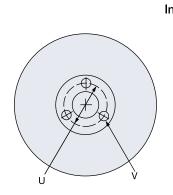
Size	Assembly Number					
7.0	6-607-003-000-0000					
9.4	6-609-003-000-0000					
12.4	6-612-003-000-0000					
3/8" NPT Fusible Plug	4-619-068-000-0					

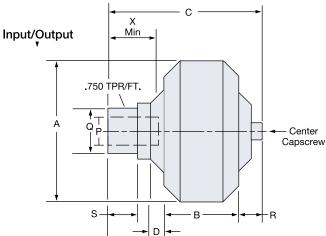
Dimensions: inches

																WR ² I	b. ft.²	
Size	A	В	C	D	L	M	N	0	P	W	X	Y	Z	Wt. Ib. Less Oil	Oil Max oz.	Outer	Inner	Gear Coupling Size
7.0	7.81	3.67	5.98	.56	3.75	4.70	4.56	1.10	1.21	1/4-20 .56 Deep	6	.254 .256	3/16	16.10	27.6	.42	.10	1
9.4	10.25	4.70	7.49	.77	4.812	5.90	6.00	1.14	1.65	3/8-16 .65 Deep	8	.380	1/4	32.25	65	1.27	.51	1-1/2
12.4	13.50	5.98	8.67	.82	4.812	6.85	6.00	1.14	1.55	3/8-16 .74 Deep	8	.380 .382	1/4	53.25	150	4.12	1.33	1-1/2

HCM

Double Engagement


The Model HCM Fluid Coupling is a complete unit with both input and output flanges. It is intended for installation between two halves of a double engagement gear tooth flexible coupling which is customer supplied.


Size	Manufacturer	Model	Maximum Bore	Diameter of Shrouded Bolt Circle
7.0	TB Woods Waldron Poole	1F 1W MXB 1	1.75 1.63 1.63	3.75 3.750 3.750
9.4 and 12.4	TB Woods Amerigear Waldron Poole	1.5F 201.5 1.5W MXB 1.5	2.25 2.38 2.19 2.19	4.812 4.812 4.812 4.812

Note: Gear couplings must be with Shrouded Bolts!

Model HSD (Parallel Shaft Applications)

Sizes 7.0-12.4

Assembly Numbers

Size	Bore (in.)	Assembly Number
	7/8	6-607-005-001-0000
7.0	1	6-607-005-002-0000
7.0	1-1/8	6-607-005-003-0000
	1-3/8	6-607-005-004-0000
	1-1/8	6-609-005-001-0000
9.4	1-3/8	6-609-005-002-0000
	1-5/8	6-609-005-003-0000
	1-5/8	6-612-005-001-0000
10.4	1-7/8	6-612-005-002-0000
12.4	2-1/8	6-612-005-003-0000
	2-3/8	6-612-005-004-0000
3/8" NPT Fus	ible Plug	4-619-068-000-0

P= Standard Input Sizes

i = Standard Input Sizes										
Size	Bore	Key								
	7/8	3/16								
7.0	1	1/4								
7.0	1 1/8	1/4								
	1 3/8	5/16								
Size	Bore	Key								
	1 1/8	1/4								
9.4	1 3/8	5/16								
	1 5/8	3/8								
Size	Bore	Key								
	1 5/8	3/8								
10.4	1 7/8	1/2								
12.4	2 1/8	1/2								
	2 3/8	5/8								

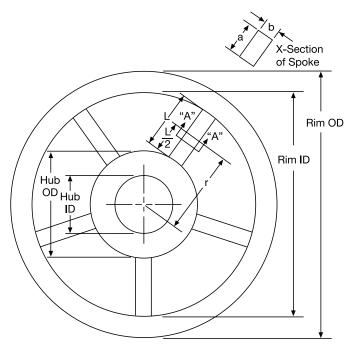
Size	A	В	C	D	Q	R	S	Т	U	V	X	Q.D. Hub Size	Dry Wt.
7.0	7.81	3.67	7.05	.56	2.149	.84	1.15	2.54	2.687	1/2-20	2.00	SD	12.75
9.4	10.25	4.70	9.35	.77	2.736	1.12	1.45	3.53	3.313	5/16-18	2.50	SK	13.75
12.4	13.50	5.98	12.12	.82	3.736	1.24	1.87	4.90	5.000	1/2-13	3.00	Е	68.00

Do not use Eaton QD sheaves. Bolt pattern is not the same.

Vertical Mounting For HSD

When mounting the 7.0, 9.4 or 12.4 HSD on a vertical shaft, the motor and collet should be mounted above the sheave and fluid coupling. This position insures even the smallest oil fill will react with the motor.

Furthermore, order the unit with the standard and optional fill plugs on both sides of the unit. This allows for the addition and maintenance of the oil level within the fluid coupling.


Model Size	Casting on Housing
7.0	216262 A
	216405 A
9.4	216438 A
	216439 A
12.4	219463 A
	219464 A

HSD	Maximum Speed
7.0	3,600 RPM
9.4	2,600 RPM
12.4	1,800 RPM

Important Note:

Size	Center Capscrew Torque					
7.0	38-42 lb.ft.					
9.4 and 12.4	177-195 lb.ft.					

How to Calculate Inertia (WR2) of a Spoked Wheel

WR
$$^2_{S}$$
 of Spokes = $\left[\left(\begin{array}{c} \frac{b^2+L^2}{1728} \end{array}\right) + \left(\begin{array}{c} \frac{r^2}{144} \end{array}\right)\right]$ x (wt of Spokes) x (No. of Spokes), Ib. ft. 2

WR² of Rim =
$$\left[\frac{(Rim OD)^2 + (Rim ID)^2}{1152}\right] \times (wt of Rim), Ib.ft.^2$$

WR² of Hub =
$$\left[\frac{\text{(Hub OD)}^2 + \text{(Hub ID)}^2}{1152}\right] \times \text{(wt of Hub), lb. ft.}^2$$

Total Flywheel Inertia =
$$WR_S^2 + WR_R^2 + WR_H^2$$

Note: All dimensions are in inches.

Clutch heat horsepower absorption rate

Absorption rate/in² of lining area. For one stop at 70°F ambient temperature

Slip time	seconds	0 to 1	2	3	4	5	6	7	8	9	10
Heat Input	lb.ft. in.²	380	617	820	1000	1175	1330	1485	1630	1770	1900
	HP in.²	.7	.56	.5	.45	.43	.4	.38	.37	.36	.34
	btu in.²	.49	.79	1.05	1.29	1.51	1.71	1.91	2.09	2.27	2.4

Consult factory for slip time over 10 seconds.

Engineering Data

Engineering Formulas

Definitions

T Torque-The moment of a system tends

to cause rotation lb.in. % forces.

WR² Inertia-weight times radius of gyration²

lb.ft.²

PSI Pounds per square inch.

Wt. Weight-lbs.

Btu British Thermal Unit = 778 lb.ft. or one

Btu.

CPM Cycles per minute.

CF Coefficient of friction.

C° Degrees Celcius.

F° Degrees Fahrenheit.

LN Natural base log.

K and U Inflation coefficients for specific clutch

and brake. See specification tables.

R, E and V Exhaust coefficient for specific clutch

and brake. See specification tables.

KW Keyway.

RPM Revolutions per minute.

t Seconds.

TIR Total Indicator run out.

V Volume-in3.

HP Given amount of work in a specific

time. 1 horsepower = 33,000 lb.ft. per

minute.

Formulas

Torque lb. in. = (HP) (63,000)

RPM

Horsepower HP = (Torque lb.in.) (RPM)

(63,000)

Acceleration Torque (lb.in.) = (WR2) (RPM)

t = time in seconds for (25.6)(t)

acceleration or deceleration.

HP/100 RPM = (HP) (100) = Required Torque Ib.in.

RPM (630)

Required Unit PSI = (Unit required Torque Ib.in.) (100 PSI)

(Unit rated torque lb.in.)

Contact velocity FPM = (Unit diameter in.) (π) (RPM)

(12)

Unit heat $HP = (Total WR^2) (RPM)^2 (CPM)$

1.9 x 10⁸

Genuine Replacement Parts

Longer Life

We have years of experience in building value into every Genuine Wichita
Replacement Part. Our parts, made with quality materials and leading-edge technology, not only last longer than the competition, resulting in lower life cycle costs, they also fit precisely to give you the assurance of trouble-free performance.
That's why we can confidently offer you the very best warranty in the business.

Faster Delivery

To help you lessen downtime problems, we've recently established new methods and procedures that will get Genuine Replacement Parts to you quicker than ever before. We've improved order processing, increased manufacturing capacities and added to our nationwide network of distributors. Many of our parts can now be shipped within 24 hours of your order or are available off-the-shelf from your local distributor. You don't have to pay a premium price for all the product and service advantages of Genuine Wichita Replacement Parts. You'll find our prices to be very competitive with any of the companies offering imitation replacement parts.

Warranty

When you specify Genuine Replacement Parts from Wichita you automatically expect more...and get more. Especially better performance, longer life and the peace of mind that comes with knowing you are working with the industry's proven leader. To further back up our quality commitment to you, we now offer a new three-year warranty on our line of replacement air tubes*, and a two-year warranty on all other components**. That's unmatched by anyone in our industry...and for good reason.

Air Tubes

- Wear resistance polymers insure compatibility with other Wichita parts
- Consistent size allows ease of replacement if required
- Low air volume construction reduces needless use of compressed air
- Combination of space-age fibers and elastomers give extended life and retention of size and fit

Friction Discs

- Special high strength materials with molded composite teeth resist functional wear and provide additional output torque
- Exactly match the mating Wichita component for consistent and maximum high torque output
- High heat resistance to combat unforeseen application problems
- Consistent size for ease of replacement
- Air grooves provide cooling and longer life

- Split air tubes are not intended for permanent installation and, therefore, are not covered under the warranty agreement.
- "The warranty does not cover replacement or refurbishment of normal wear items.

For after hours emergency service, call 1-940-631-4595.

The Brands of Altra Industrial Motion

Couplings

Ameridrives

www.ameridrives.com

Bibby Turboflex www.bibbyturboflex.com

Guardian Couplings www.guardiancouplings.com

Huco www.huco.com

Lamiflex Couplings www.lamiflexcouplings.com

Stromag

www.stromag.com

TB Wood's

www.tbwoods.com

Geared Cam Limit Switches

Stromag

www.stromag.com

Electric Clutches & Brakes

Inertia Dynamics

Matrix

www.matrix-international.com

Stromag

www.stromag.com

Warner Electric

www.warnerelectric.com

Linear Products

Warner Linear www.warnerlinear.com

Engineered Bearing Assemblies

Kilian

www.kilianbearings.com

Heavy Duty Clutches & Brakes

Industrial Clutch www.indclutch.com

Twiflex

www.twiflex.com

Stromag

www.stromag.com

Svendborg Brakes

www.svendborg-brakes.com

Wichita Clutch www.wichitaclutch.com

Belted Drives

TB Wood's

www.tbwoods.com

Bauer Gear Motor www.bauergears.com

Boston Gear

www.bostongear.com

Delroyd Worm Gear

Nuttall Gear www.nuttallgear.com

Overrunning Clutches

Formsprag Clutch

Marland Clutch

www.marland.com

Stieber www.stieberclutch.com

Neither the accuracy nor completeness of the information contained in this publication is guaranteed by the company and may be subject to change in its sole discretion. The operating and performance characteristics of these products may vary depending on the application, installation, operating conditions and environmental factors. The company's terms and conditions of sale can be viewed at http://www.altramotion.com/terms-and-conditions/sales-terms-and-conditions. These terms and conditions apply to any person who may buy, acquire or use a product referred to herein, including any person who buys from a licensed distributor of these branded products.

©2018 by Wichita Clutch LLC. All rights reserved. All trademarks in this publication are the sole and exclusive property of Wichita Clutch LLC or one of its affiliated companies.

WA LOCATIONS

Unit 1 / 45 Inspiration Drive, Wangara WA 6065 (08) 9303 4966

Unit 16 / 51-53 Kewdale Road, Welshpool WA 6106 (08) 6314 1155

NSW LOCATION

Unit 7 / 70 Holbeche Road, Arndell Park NSW 2148 (02) 9674 8611

salesnsw@chainanddrives.com.au

