Cuscinetti per movimentazione lineare Linear bearings

1. Caratteristiche tecniche

I prodotti NBS per la movimentazione lineare su albero sono stati ideati per offrire buone prestazioni mantenendo un minimo coefficiente di attrito. Il loro impiego trova applicazione in svariati campi, quali parti mobili di macchine confezionatrici, macchine utensili, macchine per la lavorazione dell'alluminio e del legno, sistemi di protezione e copertura, robots, sistemi di posizionamento strumentazioni di misura e controllo.

1. Technical characteristics

NBS linear bearings have been made to offer a good performance by keeping a minimum friction coefficient. They apply to different sectors, such as package machines, tool machines, wood and aluminium working machines, protection and covering systems, robots, positioning systems and measurement instruments too.

CUSCINETTI PER MOVIMENTAZIONE LINEARE LINEAR BEARINGS

Cuscinetti per movimentazione lineare - Linear bearings

1.1 Capacità di carico e durata

La capacità di carico è definita dalle condizioni di:

- Carico statico
- Carico dinamico

1.1.1 Carico statico

L'indice utilizzato per valutare la capacità di un sistema lineare ad assorbire i carichi e /o momenti statici applicato è la:

- Capacità di carico statica C_{0}

La capacità di carico statica C_{0} (o coefficiente di carico statico) è definita come quel carico statico di intensità e direzione costante che determina, nel punto di massima sollecitazione tra le parti in contatto, una deformazione permanente pari a $1 / 10000$ del diametro dell'elemento volvente.

I valori di C_{0} sono riportati nelle tabelle dimensionali.

1.1.2 Coefficiente di sicurezza statico as

Il coefficiente di sicurezza statico a_{s} (o fattore di sicurezza statica) è dato dalla seguente relazione:

1.1 Load rating and life

Load rating is defined for conditions of:

- Static load
- Dynamic load

1.1.1 Static load

The index used to value the static load capacity for a linear system is:

- Static load rating capacity C_{0}

Static load rating capacity C_{0} is defined as the constant load rating that generates a remaining deformation of 1/10000 of the rolling element diameter in the zone with the maximum stress.
C_{0} values are shown on dimensional tables.

1.1.2 Static safety factor as

Static safery factor is calculated through the following formula:
dove:
$a_{S}=$ coefficiente di sicurezza statico
$\mathrm{f}_{\mathrm{C}}=$ fattore di contatto
$f_{B}=$ coefficiente di layout ricircoli
$\mathrm{C}_{0}=$ capacità di carico statica $[\mathrm{N}]$
$\mathrm{P}=$ carico massimo applicato [N]
Di seguito vengono definiti i fattori f_{C} e f_{B} :

$$
a_{s}=f_{C} \times f_{B} \times C_{0} / P
$$

where:
$a_{s}=$ static safery factor
$f_{C}=$ contact factor
$f_{B}=$ layout factor
$\mathrm{C}_{0}=$ static load rating capacity [N]
$P=$ maximum load applied [N]
Definition of f_{C} and f_{B} factors as follows:

1.1.3 Fattore di contatto fc

Se due o più manicotti vengono montati su una stessa guida, la durata deve essere penalizzata per effetto di una non completa uniformità di distribuzione dei carichi applicati sui manicotti stessi.

Tabella - Fattore di contatto f_{c}

Numero manicotti per singolo albero Number of linear bearings for shaft	f_{C}
1	1.0
2	0.81
3	0.72
4	0.66
5	0.61

1.1.4 Fattore f_{B}

Per sistemi lineari del tipo asta-manicotto, la capacità di carico statica C_{0} può essere maggiorata in funzione della posizione del carico F rispetto alla posizione delle sfere; questo è dovuto ad una migliore distribuzione del carico sugli elementi volventi. Lo schema seguente riporta i coefficienti f_{B} :

1.1.4 Factor f_{B}

For linear bearings, the static load rating capacity C_{0} could be incresead by layout of balls compared with the direction of the applied load F; this is due to of a better distribution of load on balls.
The following picture shows the f_{B} coefficients:

$f_{B}=1$

$f_{B}=1$

4 ricircoli / 4 balls

$f_{B}=1$

$f_{B}=1.41$

5 ricircoli / 5 balls

$f_{B}=1$

$f_{B}=1.46$

6 ricircoli / 6 balls

$f_{B}=1$

$f_{B}=1.28$

Cuscinetti per movimentazione lineare - Linear bearings

La necessità di avere un coefficiente di sicurezza statico $a_{s}>1$ deriva dalla possibile presenza di urti e/o vibrazioni, momenti di avvio e arresti, carichi accidentali che pregiudicherebbero la capacità del sistema qualora non se ne fosse tenuto conto. Inoltre, per i sistemi lineari del tipo asta-manicotto con supporti asta del tipo SH o SK (supporti di estremità), la scelta degli elementi è funzione non solamente dei carichi in gioco, ma soprattutto della flessione dell'albero; maggiore è tale deformazione e maggiore dovrà essere il sovradimensionamento del manicotto. A titolo esemplificativo, per una freccia d'inflessione di 0.01 mm l'elemento deve essere sovradimensionato.

La tabella seguente fornisce dei valori minimi di riferimento per il coefficiente di sicurezza statico a_{s}.

Tabella - Coefficiente di sicurezza statico a_{s}

The necessity to have a static safety factor as> 1 comes from the possible presence of impacts or vibrations, start moments and stops, accidental loads that will be very dangerous if they are not taken into account. Moreover, as far as shafts supported by SH or SK supports are concerned, the choice of the size doesn't simply depend on the applied loads, but on the shaft elastic deformation too. The higher this deformation, the higher should be the oversize of the bearing. For example, a deformation of 0.01 mm implies an increase of the bearing size.
The following table shows minimal a_{S} values.

Condizioni di funzionamento Working conditions	$\mathbf{a}_{\mathbf{s}}$ minimum \boldsymbol{a}_{s} minimum
Statico e piccole flessioni Static and very small deformations Dinamico con leggere flessioni Dynamic with light deformations	$1.0 \div 2.0$
Dinamico con urti, vibrazioni e leggere flessioni Dynamic with impacts, vibrations and light deformations	$2.0 \div 4.0$

1.1.5 Carico dinamico

L' indice utilizzato per valutare la capacità del sistema lineare ad assorbire i carichi dinamici applicati è la:

- Capacità di carico dinamica C

La capacità di carico dinamica C (o coefficiente di carico dinamico) è definita come quel carico dinamico di intensità e direzione costante che determina una durata nominale di 50 km di percorso di spostamento; la durata viene intesa come il percorso teorico in assenza di segni di affaticamento. La capacità di carico dinamica C di un sistema lineare del tipo asta-manicotto è limitata da:

- Carichi e/o momenti applicati
- Flessioni dell'albero
- Velocità di funzionamento
- Ciclo di funzionamento

I valori di C sono riportati nelle tabelle dimensionali.

1.1.5 Dynamic load

The index used to value the dynamic load capacity for a linear system is:

- Dynamic load rating capacity C

Dynamic load rating capacity C is defined as a dynamic uniform load with constant intensity and direction that allows a nominal life of 50 km prior to the onset of a material breakdown.
Dynamic load rating capacity C is limited by:

- Loads and/or torques applied
- Shaft deformations
- Working speed
- Working cycle.

C values are shown on dimensional tables

CUSCINETTI PER MOVIMENTAZIONE LINEARE LINEAR BEARINGS
Cuscinetti per movimentazione lineare - Linear bearings

1.1.6 Durata nominale L

La durata nominale L (intesa come quel percorso teorico raggiunto da almeno il 90% di un significativo quantitativo di uguali cuscinetti a sfere senza formazione di segnali di affaticamento), è data dalla seguente relazione:

1.1.6 Nominal life L

Nominal life L (defined as the life expectancy reached by 90% of the same linear bearing group subjected to equal operating conditions prior to the onset of material breakdown) is defined by the following formula:

$$
\mathrm{L}=(\mathrm{C} / \mathrm{P})^{3} \times 50
$$

dove:
$\mathrm{L}=$ durata nominale [km]
$\mathrm{C}=$ capacità di carico dinamica $[\mathrm{N}]$
$P=$ carico equivalente applicato [N]
Questa relazione vale nelle ipotesi di:

- Temperatura della pista di rotolamento $\leq 100^{\circ} \mathrm{C}$
- Durezza delle piste di rotolamento ≥ 58 HRC
- Assenza di urti e vibrazioni
- Velocità di scorrimento $<15 \mathrm{~m} / \mathrm{min}$
- Manicotto singolo su albero, $\mathrm{f}_{\mathrm{C}}=1$
- Flessioni dell'albero nulle

Qualora le condizioni di esercizio non rispettassero le condizioni sopracitate si deve utilizzare la seguente relazione:
where:
$L=$ nominal life [km]
$C=$ dynamic load rating capacity [N]
$P=$ dynamic equivalent load applied [N]
This relation has validity if:

- Shaft temperature $\leq 100^{\circ} \mathrm{C}$
- Shaft hardness ≥ 58 HRC
- No presence of impacts or vibrations
- Working speed < $15 \mathrm{~m} / \mathrm{min}$
- One linear bearing for shaft, $f_{C}=1$
- No shaft deformations

If these conditions aren't respected, use the following relation:

$$
L=a_{1} \times\left(\left(f_{H} \times f_{T} \times f_{C} \times f_{B} \times C\right) /\left(f_{W} \times P\right)\right)^{3} \times 50
$$

dove:
$\mathrm{L}=$ durata nominale [km]
$\mathrm{a}_{1}=$ fattore di probabilità di cedimento
$f_{H}=$ fattore di durezza
$f_{T}=$ fattore di temperatura
$f_{C}=$ fattore di contatto (vedi coefficiente di sicurezza statico a_{s})
$f_{B}=$ coefficiente layout (vedi coefficiente di sicurezza statico a_{s})
$f_{W}=$ fattore di carico
$C=$ capacità di carico dinamica [N]
$P=$ carico equivalente applicato [N]
Di seguito vengono definiti i fattori $a_{1}, f_{H}, f_{T}, f_{W}$:
where:
$L=$ nominal life $[\mathrm{km}]$
$a_{1}=$ reliability factor
$f_{H}=$ hardness factor
$f_{T}=$ temperature factor
$f_{C}=$ contact factor (see static safety factor a_{s})
$f_{B}=$ layout factor (see static safety factor a_{s})
$f_{w}=$ load factor
$C=$ dynamic load rating capacity [N]
$P=$ dynamic equivalent load applied [N]
Definition of a_{1}, f_{H}, f_{T} and f_{W} factors as follows:

CUSCINETTI PER MOVIMENTAZIONE LINEARE LINEAR BEARINGS

Cuscinetti per movimentazione lineare - Linear bearings

1.1.7 Fattore a_{1}

Il fattore a_{1} tiene conto della probabilità di non cedimento C\%.

Tabella - Fattore di probabilità di non cedimento a_{1}

$\mathbf{C \%}$	80	85	90	92	95	96	97	98	99
\mathbf{a}_{1}	1.96	1.48	1.00	0.81	0.62	0.53	0.44	0.33	0.21

Si noti che per $\mathrm{C} \%=90, \mathrm{a}_{1}=1.00$
Note for $\mathrm{C} \%=90, a_{1}=1.00$.

1.1.8 Fattore di durezza f_{H}

Una durezza della superficie di contatto inferiore a 58 HRC favorisce il fenomeno dell'usura penalizzando quindi la durata del sistema.

1.1.7 Factor a_{1}

Factor a_{1} represents the reliability of not breakdown C\%.

Table - Reliability factor a_{1}

1.1.8 Hardness factor f_{H}

A superficial shaft hardness under than 58 HRC favours the material breakdown and consequently a lower nominal life.

Fattore di durezza f_{H}
Hardness factor f_{H} Hardness factor f_{H}

1.1.9 Fattore di temperatura f_{T}

E^{\prime} necessario conoscere la temperatura dell'elemento durante il funzionamento, poiché un valore superiore a $100^{\circ} \mathrm{C}$ può modificare le proprietà dei materiali con il conseguente effetto di riduzione della durata. Si consiglia un utilizzo dei sistemi all'interno del range $-20^{\circ} \mathrm{C} \div 100^{\circ} \mathrm{C}$.

1.1.9 Temperature factor f_{T}

It is important to know the element's working temperature. If it is higher than $100^{\circ} \mathrm{C}$, this will change the material's property and consequently reduce the nominal life. We advise to use the systems within the following range: 20° C- $100^{\circ} \mathrm{C}$.

Fattore di temperatura f_{T} Temperature factor f_{T}

CUSCINETTI PER MOVIMENTAZIONE LINEARE LINEAR BEARINGS
Cuscinetti per movimentazione lineare - Linear bearings

1.1.10 Fattore di carico fw

Qualora non fosse possibile calcolare con esattezza tutti i carichi dinamici applicati, quali ad esempio forze d'inerzia e relativi momenti generati, vibrazioni ed eventuali urti generati specialmente alle alte velocità, tali fenomeni devono essere considerati tramite questo fattore.

Tabella - Fattore di carico f_{w}

1.1.10 Load factor f ${ }_{w}$

If it weren't possible to calculate all the dynamic applied loads with high accuracy, as for example inertial forces and the generated relatives torque, vibrations and impacts especially at high speed, these adjunctive loads have to be considered through this factor.

Table - Load factor f_{w}

Condizioni di lavoro / Working conditions	f_{W}
Urti e vibrazioni assenti e/o velocità bassa No impacts, no vibrations and/or slow speed $(v \leq 15 \mathrm{~m} / \mathrm{min})$	$1.0 \div 1.5$
Urti e vibrazioni leggeri e/o velocità media Light impacts and light vibrations, medium speed $(15<\mathrm{v}<60 \mathrm{~m} / \mathrm{min})$	$1.5 \div 2.0$
Urti e vibrazioni forti e/o velocità alta Hard impacts and hard vibrations, high speed $(\mathrm{v} \geq 60 \mathrm{~m} / \mathrm{min})$	$2.0 \div 3.5$

La durata effettiva Leff (o durata di esercizio) può essere differente da quella nominale L calcolata in quanto essa dipende inoltre da:

- Flessioni dell'albero
- Ambiente esterno (presenza di polveri e/o agenti ossidanti)
- Lubrificazione
- Montaggio delle guide (eventuali disallineamenti)
- Precarico

1.1.11 Durata Lh

Conoscendo L (durata nominale in km di percorso) si può ricavare la durata di servizio in ore (L_{h}).
Essa può essere ricavata in condizioni di:

- Velocità costante
- Velocità variabile

Velocità costante

La durata di servizio in ore L_{h} è funzione della lunghezza della corsa del manicotto e del numero dei cicli alternativi al minuto; si ricava dalla seguente relazione:

Effective life Leff could be different from the nominal L wich is also depends on:

- Shaft deformations
- External conditions (presence of dust and/oxidative agents)
- Lubrication
- Shaft mounting (presence of misaligneaments)
- Preload

1.1.11 Nominal life L_{h}

Knowing L (nominal life, calculated in running km) it will be to calculate the same value in hours (L_{n}).
This can be done when:

- Uniform speed
- Not uniform speed

Uniform speed

Nominal travel life expressed in hours is function of the travel lenght and of the number of alternative cycles in a minute; to obtain it, use the following formula:

$$
L_{h}=L \times 10^{3} /\left(2 \times I_{c} \times n_{\mathrm{alt}} \times 60\right)
$$

CUSCINETTI PER MOVIMENTAZIONE LINEARE LINEAR BEARINGS
Cuscinetti per movimentazione lineare - Linear bearings
dove:
$\mathrm{L}_{\mathrm{h}}=$ durata di servizio [ore]
L = durata nominale [km]
$\mathrm{I}_{\mathrm{c}}=$ lunghezza corsa [m]
$\mathrm{n}_{\text {alt }}=$ numero cicli alternativi al minuto $\left[\mathrm{min}^{-1}\right.$]

Velocità variabile

La durata di servizio in ore L_{h} è funzione della velocità media
where:
$L_{h}=$ nominal travel life [h]
$L=$ nominal life [km]
$I_{c}=$ travel lenght $[\mathrm{m}]$
$n_{\text {olt }}=$ number of alternative cycle for minute $\left[\mathrm{min}^{-1}\right.$]

Not uniform speed

Nominal travel life expressed in hours is function of the average speed

$$
\mathrm{L}_{\mathrm{h}}=\mathrm{L} \times 10^{3} /\left(\mathrm{v}_{\mathrm{m}} \times 60\right)
$$

dove: where:
$\mathrm{L}_{\mathrm{h}}=$ durata di servizio [ore]
$\mathrm{L}=$ durata nominale [km]
$v_{\mathrm{m}}=$ velocità media pari a : $\sum_{\mathrm{i}=1}^{\mathrm{n}} \quad \mathrm{v}_{\mathrm{i}} \times \mathrm{q}_{\mathrm{i}}[\mathrm{m} / \mathrm{min}]$
$v_{\mathrm{i}}=$ velocità i -esima [$\mathrm{m} / \mathrm{min}$]
$q_{i}=$ ripartizione i-esima di $v_{i}\left(\sum_{i=1}^{n} q_{i}=1\right)$

1.1.12 Resistenza d'attrito

Il calcolo della resistenza d'atrito S è data dalla seguente relazione:
$L_{h}=$ nominal travel life [h]
$L=$ nominal life [km]
$v_{m}=$ average speed: $\sum_{i=1}^{n} \quad v_{i} \times q_{i}[\mathrm{~m} / \mathrm{min}]$
$v_{i}=i$-part speed [m/min]
$q_{i}=i$-part portion of $v_{i}\left(\sum_{i=1}^{n} q_{i}=1\right)$

1.1.12 Friction resistance

The friction resistance S is given by the following relation:

$$
S=\mu \times F+f \times \text { Nombre de dovilles / bushes }
$$

dove:
$S=$ resistenza d'attrito (denominata anche forza d'attrito o forza di spinta) [N]
$\mu=$ coefficiente d'attrito ($0.002 \leq \mu \leq 0.005$ con P/C $>0,2$)
$\mathrm{F}=$ carico applicato [N]
$f=$ altrito dipendente da: guarnizioni, viscosità del lubrificante, precarico ecc ($2 \leq f \leq 5 \mathrm{~N}$ per singolo manicotto) [N]
n° manicotti $=$ numero manicotti

1.2 Lubrificazione

Come tutti i sistemi lineari presenti in commercio, anche i prodotti NBS necessitano di una adeguata lubrificazione per la garanzia della durata prevista; infatti, I'attrito che si genererebbe in assenza di lubrificante sarebbe tale da favorire il fenomeno dell'usura, con la conseguenza di una vita ridotta del sistema. Per la scelta del tipo di lubrificante valgono le seguenti considerazioni di validità generale:

- per velocità medie e corsa orizzontale: grasso a base di sapone di litio 2;
- per velocità sostenute: olio a bassa viscosità;
where:
$S=$ friction resistance (named friction force or push force) [N]
$\mu=$ friction coefficient $(0.002 \leq \mu \leq 0.005$ with $P / C>0,2)$;
$F=$ load applied [N]
$f=$ friction function of: seals, lubricant, preload etc ($2 \leq f \leq 5 \mathrm{~N}$ for each bush) [N]
n° bushes $=$ number of bushes

1.2 Lubrication

As all linear systems, NBS linear system products need an adequate lubrication too as guarantee the calculated life; in fact, without the necessary lubrication there would be a significant reduction of nominal life caused by the wear and tear phenomenon. To choose the right lubricant use the following general indications:

- for median speed and horizontal travel: soap lithium greases 2;
- for high speed: oil with low viscosity.

La scelta ottimale del tipo e della quantità idonea di lubrificante è sempre funzione delle condizioni di lavoro e delle caratteristiche del lubrificante stesso; qualora il sistema lavori in ambiente corrosivo applicare una copertura proteltiva aggiuntiva.

1.3 Accoppiamento

Le tolleranze di accoppiamento albero-manicotto o alberosupporto sono raffigurate nella tabella seguente:

The optimal choice of lubricant and its quantity is always function of the work conditions and of its characteristics; if the external ambient is corrosive, use an adjunctive protection.

1.3 Coupling

The following table gives the fitting shaft-bush tolerances:

Tabella - Gioco di funzionamento di cuscinetti KH
Table - Working clearance of KH bearings

Materiale dell'alloggiamento Housing material	Acciaio o ghisa Steel or cast iron	Metallo leggero Light metal
Gioco di funzionamento normale/Standard working clearance		
Tolleranza foro / Bore tolerance	H7	K7
Tolleranza albero / Shaft tolerance	h6	h6
Gioco di funzionamento inferiore al normale/ Working clearance under standard level		
Tolleranza foro / Bore tolerance	H6	K6
Tolleranza albero / Shaft tolerance	i5	i5

Gioco di funzionamento / Working clearance

Tabella - Gioco di funzionamento di cuscinetti KB

Tolleranze di montaggio / Mounting tolerances		Cuscinetto / Bearing	Gioco di funzionamento
Albero/Shaft	Foro/Bore		Working clearance (dimensions)
h6	H6 (H7)	KB 1232	+19
h6	H6 (H7)	KB 1636	+19 -1
h6	H6 (H7)	KB 2045	+22
h6	H6 (H7)	KB 2558	+24
h6	H6 (H7)	KB 3068	+24
h6	H6 (H7)	KB 4080	+29 -2
h6	H6 (H7)	KB 50100	+29 -2

Cuscinetti per movimentazione lineare - Linear bearings

Tabella - Gioco di funzionamento di cuscinetti a sfere per movimenti lineari KBS, KBO

Table - Working clearance of ball bearings for KBS and KBO linear movements

Tolleranze di montaggio Mounting tolerances		Gioco di funzionamento Working clearance						
Albero/Shaft	Foro/Bore	$\begin{aligned} & \text { KBS } 1232 \\ & \text { KBO } 1232 \end{aligned}$	$\begin{aligned} & \text { KBS } 1636 \\ & \text { KBO } 1636 \end{aligned}$	$\begin{aligned} & \text { KBS } 2045 \\ & \text { KBO } 2045 \end{aligned}$	$\begin{aligned} & \text { KBS } 2558 \\ & \text { KBO } 2558 \end{aligned}$	$\begin{aligned} & \text { KBS } 3068 \\ & \text { KBO } 3068 \end{aligned}$	$\begin{aligned} & \text { KBS } 4080 \\ & \text { KBO } 4080 \end{aligned}$	$\begin{array}{\|ll} \text { KBS } 50100 \\ \text { KBO } 50100 \end{array}$
h6	H6	$\begin{aligned} & +37 \\ & +16 \end{aligned}$	$\begin{aligned} & +37 \\ & +16 \end{aligned}$	$\begin{aligned} & +43 \\ & +17 \end{aligned}$	$\begin{array}{r} +44 \\ +18 \end{array}$	$\begin{aligned} & +44 \\ & +18 \end{aligned}$	$\begin{aligned} & +51 \\ & +20 \end{aligned}$	$\begin{aligned} & +51 \\ & +20 \end{aligned}$
h6	JS6	+30 $+\quad 9$	+31 $+\quad 9$	$\begin{array}{r} +35 \\ +\quad 9 \end{array}$	$\begin{aligned} & +36 \\ & +10 \end{aligned}$	$\begin{aligned} & +36 \\ & +10 \end{aligned}$	$\begin{aligned} & +42 \\ & +10 \end{aligned}$	$\begin{aligned} & +42 \\ & +10 \end{aligned}$
h6	K6	$\begin{aligned} & +26 \\ & +\quad 5 \end{aligned}$	$\begin{aligned} & +26 \\ & +\quad 5 \end{aligned}$	$\begin{aligned} & +30 \\ & +\quad 5 \end{aligned}$	$\begin{array}{r} +31 \\ +\quad 5 \end{array}$	$\begin{array}{r} +31 \\ +\quad 5 \end{array}$	$\begin{array}{r} +36 \\ +\quad 5 \end{array}$	$\begin{aligned} & +36 \\ & +\quad 5 \end{aligned}$
h6	M6	+ 20 $-\quad 1$	+ 20 $-\quad 1$	+23 $+\quad 2$	+24 $+\quad 2$	+24 $+\quad 2$	+27 $-\quad 4$	+27 $-\quad 4$

Per evitare fenomeni di deterioramento precoce, nella fase di montaggio del manicotto nel relativo supporto, si utilizzi un tampone cilindrico avente un diametro esterno inferiore di 0.1 mm del diametro esterno del manicotto, con superficie d'appoggio piana e perpendicolare all'asse (vedi figura).

To avoid early deterioration during the mounting of the bush in the corresponding support, use a cylindrical buffer whose bottom external diameter is 0.1 mm less wide than the bush's external diameter. The buffer should be provided with a plane and perpendicular push surface (see the picture).

Qualora I'accoppiamento fosse libero, cioè privo di interferenze, si utilizzino ghiere, anelli elastici, coperchi ecc. per il bloccaggio dell'elemento.
E^{\prime} tuttavia necessario tenere presente che il buon funzionamento di un cuscinetto per la movimentazione lineare è legato ai seguenti fattori:

- montaggio: deve essere accurato e senza urti sull'elemento; la forza d'inserimento deve essere il più possibile costante e agente sul bordo esterno;
- lubrificazione: adatta al tipo di utilizzo, deve considerare lubrificanti di buona qualità;
- dimensionamento: i carichi agenti devono essere ben sopportati dall'elemento;
- ambiente esterno: non ci deve essere la possibilità che polveri e particelle meccaniche vengano inglobate nei ricircoli si sfere.

If there is a free mounting (without interferences), use lock nuts, elastic rings, covers etc. to lock the element. It's important to know that the right working conditions are determined by:

- mounting: it has to be accurate without impacts; the push force has to be constant and applied on the external rim;
- Iubrication: chocen according to the working conditions, it has to consider good quality lubricants;
- dimensions: the applied loads have to be accurately calculated;
- external environment: dust and other materials must not be swallowed by ball recirculates.

2. Manicotti a sfere

2. Slide bushes

I manicotti a ricircolo di sfere NBS si suddividono in:

Serie leggera (KH)

I manicotti a sfere NBS serie leggera presentano i seguenti vantaggi:

- ingombri radiali minimi

Serie normale:

I manicotti a sfere NBS serie normale presentano i seguenti vantaggi:

- buona rigidità
- basso coefficiente di atrrito
- elevata precisione
- elevata silenziosità d'esercizio
non flangiati (KB, KBS, KBO, KBL)
flangiati (KBF, KBFL, KBK, KBKL, KBH, KBHL)

- Serie autoallineante (KN, KNO)

I manicotti a sfere NBS serie autoallineante, presentano i seguenti vantaggi:

- compensazione di disallineamenti fino a $\pm 30^{\prime}$
- maggiore capacità di carico e quindi maggiore durata
- velocità ammissibile aumentata
- elevata silenziosità d'esercizio

Tutti possono essere forniti con:

- anelli di tenuta in entrambi i lati (suffisso -PP)
- senza anelli di tenuta (nessun suffisso)

NBS bushes are divided into:

Light series (KH);

NBS light bush series has the following advantages:

- smallest overall radial dimensions

Normal series:

NBS normal bush series has the following advantages:

- good rigidity
- low friction coefficient
- high precision
- high work-noiselessness
not flanged ($K B, K B S, K B O, K B L$)
flanged (KBF, KBFL, KBK, KBKL, KBH, KBHL)

Self-alignement series (KN, KNO)

NBS slide bushes self-alignement series, has the following advantages:

- misalignement compensation until $\pm 30^{\prime}$
- higher load capacity and therefore higher nominal life
- higher admissible speed
- high work-noiselessness

They can be supplied with:

- seals on both sides (suffix -PP)
- without seals (no suffix)

2.1 Intercambiabiliłà

2.1 Interchangeability

Serie KH / KH series

NBS	INA	FAG	SKF	STAR	NTN	KBS
KH..	KH..	LNA.	LBBR..	$0658-0 . .-00$	KH..	KH..
KH..PP	KBBS..)	(LFA..)				
	KH..PP	LNA..2RS	LBBR..2LS	$0658-2 . .-40$	KH..LL	KH.PP

Serie KB - Gabbia in poliammide / KB series - Polyamide cage

NBS	INA	SKF	KBS	NB	THK	IKO	THOMSON	EASE
KB..	KB..	LBAR/LBCR..	LME..	KB..G	LME..	LBE..	MA M..	SDE..
KB..PP	KB..PP	LBAR/LBCR..2LS	LME..UU	KB..GUU	LME..UU	LBE..UU	MA M..WW	SDE.UU
KBS..	KBS..	LBAS..	LME..AJ	KB..GAJ	LME..AJ	LBE..AJ	MA M..ADJ	SDE..AJ
KBS..PP	KBS..PP	LBAS..2LS	LME..UUAJ	KB..GUUAJ	LME..UUAJ	LBE..UUAJ	MA M..ADJ WW	SDE..UUAJ
KBO..	KBO..	LBAT/LBCT..	LME..OP	KB..GOP	LME..OP	LBE..OP	MA M..OPN	SDE..OP
KBO..PP	KBO..PP	LBAT/LBCT..2LS	LME..UUOP	KB..GUUOP	LME..UUOP	LBE..UUOP	MA M..OPN WW	SDE..UUOP

Tipologia Type	Peso Weight [kg]	d [mm]	D [mm]	L [mm]	Capacità di Carico [N] Load capacity rating [N]	
				C	C0	
KH 06 22	0.007	6	12	22	400	239
KH 08 24	0.013	8	15	24	435	280
KH 10 26	0.015	10	17	26	500	370
KH 12 28	0.019	12	19	28	620	510
KH 14 28	0.021	14	21	28	620	520
KH 16 30	0.028	16	24	30	800	620
KH 20 30	0.033	20	28	30	950	790
KH 25 40	0.066	25	35	40	1990	1670
KH 30 50	0.095	30	40	50	2800	2700
KH 40 60	0.182	40	52	60	4400	4450
KH 50 70	0.252	50	62	70	5500	6300

Sigla d'ordine/Specification number:
Sigla d'ordine/Specification number:

Esempio: KH 16 PP (modello KH, diametro albero 16 mm , tenute in entrambi i lati).
Example: KH 16 PP (model KH, shaft diameter 16 mm , seals on both sides).

Gabbia in poliammide - Polyamide cage

Tipologia Type	N° ricircoli Number of ball rows	Peso Weight [kg]	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	d Tolleranza Tolerance [$\mu \mathrm{m}$]		$\begin{gathered} \mathrm{D} \\ {[\mathrm{~mm}]} \end{gathered}$	D Tolleranza Tolerance [$\mu \mathrm{m}$]	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	L Tolleranza Tolerance [mm]	
KB 0522	4	0.012	5	+8 $\div 0$		12	$0 \div-8$	22		-0.2
KB 0825	4	0.018	8	+8 $\div 0$		16	$0 \div-8$	25		-0.2
KB 1029	4	0.024	10	+8 $\div 0$		19	$0 \div-8$	29		-0.2
KB 1232	4	0.041	12	+8 $\div 0$		22	$0 \div-9$	32		-0.2
KB 1636	5	0.055	16	+9 $\div-1$		26	$0 \div-9$	36		-0.2
KB 2045	5	0.091	20	+9 $\div-1$		32	$0 \div-11$	45		-0.2
KB 2558	6	0.205	25	$+11 \div-$		40	$0 \div-11$	58		-0.3
KB 3068	6	0.310	30	$+11 \div-$		47	$0 \div-11$	68		-0.3
KB 4080	6	0.680	40	+13 $\div-2$		62	$0 \div-13$	80		-0.3
KB 50100	6	1.030	50	+13 $\div-2$		75	$0 \div-13$	100		-0.3
KB 60125	6	2.010	60	+13 $\div-2$		90	$0 \div-15$	125		-0.4
Tipologia Type	\mathbf{L}_{1}	$\stackrel{\mathrm{L}_{1}}{\text { Tolleranza }}$ Tolerance	w		$\begin{aligned} & \text { Ecce } \\ & \text { Max } \end{aligned}$	ntricità max eccentricity	Tolleranza g radiale Radial clear		Capaci oad ca	di Carico city rating]
							toleranc [$\mu \mathrm{m}$]		C	C_{0}
KB 0522	14.5	$0 \div-0.2$	1.1	11.5		12	-5		210	270
KB 0825	16.5	$0 \div-0.2$	1.1	15.2		12	-5		270	410
KB 1029	22	$0 \div-0.2$	1.3	18		12	-5		370	470
KB 1232	22.9	$0 \div-0.2$	1.3	21		12	-7		520	790
KB 1636	24.9	$0 \div-0.2$	1.3	24.9		12	-7		590	910
KB 2045	31.5	$0 \div-0.2$	1.6	30.3		15	-9		880	1400
KB 2558	44.1	$0 \div-0.3$	1.85	37.5		15	-9		1000	1600
KB 3068	52.1	$0 \div-0.3$	1.85	44.5		15	-9		1600	2800
KB 4080	60.6	$0 \div-0.3$	2.15	59		17	-13		2200	4000
KB 50100	77.6	$0 \div-0.3$	2.65	72		17	-13		3900	8100
KB 60125	101.7	$0 \div-0.4$	3.15	86.5		20	-16		4800	10200

Sigla d'ordine/Specification number:
Sigla d'ordine/Specification number:
$K B-d-P P$
$K B-d$
[tenute in entrambi i lati / seals on both sides].
[senza tenute/ without seals].

Esempio: KB 20 PP (modello KB , diametro albero 20 mm , tenute in entrambi i lati).
Example: KB 20 PP (KB model, shaft diameter 20 mm , seals on both sides).
Su richiesta sono disponibili anche con gabbia in acciaio.
Under request are available, also with steel cage.

Gabbia in poliammide - Polyamide cage

Tipologia Type	N° ricircoli Number of ball rows		Peso Weight [kg]	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$		d Tolleranza Tolerance [$\mu \mathrm{m}$]		D [mm]		D olleranza olerance [$\mu \mathrm{m}$]	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	L Tolleranza Tolerance [mm]	
KBS 0522	4		0.01		5	+8 $\div 0$		12		$0 \div-8$	22		- -0.2
KBS 0825	4		0.01		8	+8 $\div 0$		16		$0 \div-8$	25		0 $\div-0.2$
KBS 1029	4		0.02		10	+8 $\div 0$		19		$0 \div-8$	29		- $\div-0.2$
KBS 1232	4		0.04		12	+8 $\div 0$		22		$0 \div-9$	32		0 $\div-0.2$
KBS 1636	5		0.05		16	+9 $\div-1$		26		$0 \div-9$	36		- $\div 0.2$
KBS 2045	5		0.09		20	+9 $\div-1$		32		$0 \div-11$	45		- $\div-0.2$
KBS 2558	6		0.20		25	$+11 \div-1$		40		$0 \div-11$	58		- $\div-0.3$
KBS 3068	6		0.31		30	$+11 \div-1$		47		$0 \div-11$	68		- $\div-0.3$
KBS 4080	6		0.68		40	$+13 \div-2$		62		$0 \div-13$	80		- $\div-0.3$
KBS 50100	6		1.03		50	$+13 \div-2$		75		$0 \div-13$	100		- $\div-0.3$
KBS 60125	6		2.01		60	$+13 \div-2$		90		$0 \div-15$	125		$0 \div-0.4$
Tipologia Type	$\begin{gathered} \mathrm{L}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$			$\begin{gathered} W \\ {[\mathrm{~mm}]} \end{gathered}$	h [mm]	D_{1} [mm]		ccentricitò max ax eccentric		Tolleranzo radio Radial cle		Capacit Load cap	ì̀ di Carico pacity rating [N]
										[$\mu \mathrm{m}$]		C	C_{0}
KBS 0522	14.5		-0.2	1.1	1.1	11.5		12		-5		210	270
KBS 0825	16.5		-0.2	1.1	1.1	15.2		12		-5		270	410
KBS 1029	22	$0 \div$	-0.2	1.3	1.3	18		12		-5		370	470
KBS 1232	22.9	0	-0.2	1.3	1.3	21		12		-7		520	790
KBS 1636	24.9	$0 \div$	-0.2	1.3	1.3	24.9		12		-7		590	910
KBS 2045	31.5	$0 \div$	-0.2	1.6	1.6	30.3		15		-9		880	1400
KBS 2558	44.1	0	-0.3	1.85	1.85	37.5		15		-9		1000	1600
KBS 3068	52.1	$0 \div$	-0.3	1.85	1.85	44.5		15		-9		1600	2800
KBS 4080	60.6	$0 \div$	-0.3	2.15	2.15	59		17		-13		2200	4000
KBS 50100	77.6	$0 \div$	-0.3	2.65	2.65	72		17		-13		3900	8100
KBS 60125	101.7	$0 \div$	-0.4	3.15	3.15	86.5		20		-16		4800	10200

Sigla d'ordine/Specification number:
Sigla d'ordine/Specification number:

KBS - $d-P P$
KBS - d
[tenute in entrambi i lati / seals on both sides].
[senza tenute/ without seals].

Esempio: KBS 20 PP (modello KBS, diametro albero 20 mm , tenute in entrambi i lati).
Example: KBS 20 PP (KBS model, shaft diameter 20 mm , seals on both sides).

Gabbia in poliammide - Polyamide cage

Sigla d'ordine/Specification number:
Sigla d'ordine/Specification number:
$K B O-d-P P$
$K B O-d$
[tenute in entrambi i lati / seals on both sides]. [senza tenute/ without seals].

Esempio: KBO 20 PP (modello KBO , diametro albero 20 mm , tenute in entrambi i lati).
Example: KBO 20 PP (KBO model, shaft diameter 20 mm , seals on both sides).

KBL

Cuscinetti per movimentazione lineare - Linear bearings

Gabbia in poliammide - Polyamide cage

Tipologia Type	N° ricircoli Number of ba rows	Peso Weight [kg]	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	d Tolleranza Tolerance [$\mu \mathrm{m}$]	$\begin{gathered} \mathrm{D} \\ {[\mathrm{~mm}]} \end{gathered}$	D Tolleranza Tolerance $[\mu \mathrm{m}]$ Lmm	$\stackrel{\text { L }}{\text { Tolleranza }}$ Tolerance [mm]	
KBL 0845	4	0.031	8	+9 $\div-1$	16	$0 \div-9 \quad 45$		-0.3
KBL 1257	4	0.080	12	+9 $\div-1$	22	$0 \div-11$		-0.3
KBL 1670	5	0.145	16	$+11 \div-1$	26	$0 \div-11 \quad 70$		-0.3
KBL 2080	5	0.180	20	+11 $\div-1$	32	$0 \div-13 \quad 80$		-0.3
KBL 25112	6	0.440	25	+13 $\div-2$	40	$0 \div-13 \quad 112$		-0.4
KBL 30123	6	0.580	30	+13 $\div-2$	47	$0 \div-13$		-0.4
KBL 40154	6	1.170	40	+16 $\div-4$	62	$0 \div-15$		-0.4
KBL 50192	6	3.000	50	$+16 \div-4$	75	$0 \div-15$		-0.4
KBL 60211	6	3.500	60	+16 $\div-4$	90	$0 \div-20 \quad 209$		-0.4
Tipologia	L_{1}	L_{1} Tolleranza Tolerance	w	D_{1}	Eccentricità max Max	Tolleranza gioco radiale Radial clearance	Capaci Load cap	di Carico city rating \qquad
		[mm]			eccentricity [$\mu \mathrm{m}$]	$\begin{gathered} \text { oleranc } \\ {[\mu \mathrm{m}]} \end{gathered}$	C	C_{0}
KBL 0845	33	$0 \div-0.3$	1.1	15.2	15	-15	431	784
KBL 1257	45.8	$0 \div-0.3$	1.3	21	15	-15	657	1200
KBL 1670	49.8	$0 \div-0.3$	1.3	24.9	15	-15	1230	2350
KBL 2080	61	$0 \div-0.3$	1.6	30.5	15	-15	1400	2750
KBL 25112	82	$0 \div-0.4$	1.85	38	17	-17	1560	3140
KBL 30123	104.2	$0 \div-0.4$	1.85	44.5	17	-17	2490	5490
KBL 40154	121.2	$0 \div-0.4$	2.15	59	20	-20	3430	8040
KBL 50192	155.2	$0 \div-0.4$	2.65	72	20	-20	6080	15900
KBL 60211	170	$0 \div-0.4$	3.15	86.5	25	-25	7650	20000

Sigla d'ordine/Specification number:
Sigla d'ordine/Specification number:

$$
\begin{aligned}
& K B L-d-P P \\
& K B L-d
\end{aligned}
$$

[tenute in entrambi i lati / seals on both sides]. [senza tenute/ without seals].

Esempio: KBL 20 PP (modello KBL, diametro albero 20 mm , tenute in entrambi i lati).
Example: KBL 20 PP (KBL model, shaft diameter 20 mm, seals on both sides).

Gabbia in poliammide - Polyamide cage

Tipologia Type	N° ricircoli Number of ball rows	Peso Weight [kg]	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	d Tolleranza Tolerance [$\mu \mathrm{m}$]	$\begin{gathered} \mathrm{D} \\ {[\mathrm{~mm}]} \end{gathered}$	D Tolleranza Tolerance [$\mu \mathrm{m}$]	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$		$\begin{gathered} \mathrm{D}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	D Tolleranza Tolerance [mm]
KBF 08	4	0.044	8	+8 $\div 0$	16	$0 \div-8$	25	$0 \div-0.2$	32	$0 \div-0.2$
KBF 12	4	0.086	12	+8 $\div 0$	22	$0 \div-9$	32	$0 \div-0.2$	42	$0 \div-0.2$
KBF 16	5	0.120	16	+9 $\div-1$	26	$0 \div-9$	36	$0 \div-0.2$	46	$0 \div-0.2$
KBF 20	5	0.184	20	+9 $\div-1$	32	$0 \div-11$	45	$0 \div-0.2$	54	$0 \div-0.2$
KBF 25	6	0.335	25	$+11 \div-1$	40	$0 \div-11$	58	$0 \div-0.3$	62	$0 \div-0.2$
KBF 30	6	0.545	30	$+11 \div-1$	47	$0 \div-11$	68	$0 \div-0.3$	76	$0 \div-0.2$
KBF 40	6	1.180	40	+13 $\div-2$	62	$0 \div-13$	80	$0 \div-0.3$	98	$0 \div-0.3$
KBF 50	6	1.730	50	+13 $\div-2$	75	$0 \div-13$	100	$0 \div-0.3$	112	$0 \div-0.3$
KBF 60	6	3.180	60	+13 $\div-2$	90	$0 \div-15$	125	$0 \div-0.4$	134	$0 \div-0.3$

Tipologia Type	$\begin{gathered} \mathrm{H} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { d1xd2xh } \\ {[\mathrm{mm}]} \end{gathered}$	TolleranzaperpendicolaritàflangiaPerpendicularityflange folerance$[\mu \mathrm{m}]$	Eccentricità max Max eccentricity [$\mu \mathrm{m}$]	Tolleranza gioco radiale Radial clearance tolerance [$\mu \mathrm{m}$]	Capacità di Carico Load capacity rating [N]	
							C	C_{0}
KBF 08	5	24	$3.4 \times 6.5 \times 3.3$	12	12	-5	270	410
KBF 12	6	32	$4.5 \times 8 \times 4.4$	12	12	-5	520	790
KBF 16	6	36	$4.5 \times 8 \times 4.4$	12	12	-7	590	910
KBF 20	8	43	$5.5 \times 9.5 \times 5.4$	15	15	-9	880	1400
KBF 25	8	51	$5.5 \times 9.5 \times 5.4$	15	15	-9	1000	1600
KBF 30	10	62	$6.6 \times 11 \times 6.5$	15	15	-9	1600	2800
KBF 40	13	80	$9 \times 14 \times 8.6$	20	20	-13	2200	4100
KBF 50	13	94	$9 \times 14 \times 8.6$	20	20	-13	3900	8100
KBF 60	18	112	$11 \times 17.5 \times 10.8$	25	25	-13	4800	10200

Sigla d'ordine/Specification number:
Sigla d'ordine/Specification number:

$$
\begin{aligned}
& \text { KBF - d-PP } \\
& \text { KBF - } d
\end{aligned}
$$

[tenute in entrambi i lati / seals on both sides]. [senza tenute/ without seals].

Esempio: KBF 20 PP (modello KBF, diametro albero 20 mm , tenute in entrambi i lati).
Example: KBF 20 PP (KBF model, shaft diameter 20 mm , seals on both sides).

Cuscinetti per movimentazione lineare - Linear bearings

Gabbia in poliammide - Polyamide cage

Tipologia Type	N° ricircoli Number of ball rows	Peso Weight [kg]	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	d Tolleranza Tolerance [$\mu \mathrm{m}$]	$\begin{gathered} \mathrm{D} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { D } \\ \text { Tolleranza } \\ \text { Tolerance } \\ {[\mu \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { L } \\ \text { Tolleranza } \\ \text { Tolerance } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	
KBFL 08	4	0.053	8	+9 $\div-1$	16	$0 \div-9$	45	$0 \div-0.3$	32	$0 \div-0.2$
KBFL 12	4	0.100	12	+9 $\div-1$	22	$0 \div-11$	57	$0 \div-0.3$	42	$0 \div-0.2$
KBFL 16	5	0.187	16	$+11 \div-1$	26	$0 \div-11$	70	$0 \div-0.3$	46	$0 \div-0.2$
KBFL 20	5	0.260	20	$+11 \div-1$	32	$0 \div-13$	80	$0 \div-0.3$	54	$0 \div-0.2$
KBFL 25	6	0.550	25	$+13 \div-2$	40	$0 \div-13$	112	$0 \div-0.4$	62	$0 \div-0.2$
KBFL 30	6	0.650	30	$+13 \div-2$	47	$0 \div-13$	123	$0 \div-0.4$	76	$0 \div-0.2$
KBFL 40	6	1.560	40	$+16 \div-4$	62	$0 \div-15$	154	$0 \div-0.4$	98	$0 \div-0.3$
KBFL 50	6	3.500	50	+16 $\div-4$	75	$0 \div-15$	192	$0 \div-0.4$	112	$0 \div-0.3$
KBFL 60	6	4.500	60	+16 $\div-4$	90	$0 \div-20$	209	$0 \div-0.4$	134	$0 \div-0.3$

Tipologia Type	$\begin{gathered} \mathrm{H} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	d1xd2xh [mm	TolleranzaperpendicolaritàflangiaPerpendicularityflange folerance$[\mu \mathrm{m}]$	Eccentricità max Max eccentricity [$\mu \mathrm{m}$]	Tolleranza gioco radiale Radial clearance tolerance [$\mu \mathrm{m}$]	Capacità di Carico Load capacity rating [N]	
							C	C_{0}
KBFL 08	5	24	$3.4 \times 6.5 \times 3.3$	12	12	-5	431	784
KBFL 12	6	32	$4.5 \times 8 \times 4.4$	12	12	-5	657	1200
KBFL 16	6	36	$4.5 \times 8 \times 4.4$	12	12	-7	1230	2350
KBFL 20	8	43	$5.5 \times 9.5 \times 5.4$	15	15	-9	1400	2750
KBFL 25	8	51	$5.5 \times 9.5 \times 5.4$	15	15	-9	1560	3140
KBFL 30	10	62	$6.6 \times 11 \times 6.5$	15	15	-9	2490	5490
KBFL 40	13	80	$9 \times 14 \times 8.6$	20	20	-13	3430	8040
KBFL 50	13	94	$9 \times 14 \times 8.6$	20	20	-13	6080	15900
KBFL 60	18	112	$11 \times 17.5 \times 10.8$	25	25	-13	7650	20000

Sigla d'ordine/Specification number:
Sigla d'ordine/Specification number:

KBFL-d-PP
KBFL-d
[tenute in entrambi i lati / seals on both sides]. [senza tenute/ without seals].

Esempio: KBFL 20 PP (modello KBFL, diametro albero 20 mm , tenute in entrambi i lati).
Example: KBFL 20 PP (KBFL model, shaft diameter 20 mm , seals on both sides).

Gabbia in poliammide - Polyamide cage

Tipologia Type	N° ricircoli Number of ball rows	Peso Weight [kg]	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	d Tolleranza Tolerance [$\mu \mathrm{m}$]	$\begin{gathered} \text { D } \\ {[\mathrm{mm}]} \end{gathered}$	D Tolleranza Tolerance [$\mu \mathrm{m}$]	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	L Tolleranza Tolerance [mm]	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	D_{1} Tolleranza Tolerance [$\mu \mathrm{m}$]
KBK 08	4	0.033	8	+8 $\div 0$	16	$0 \div-8$	25	$0 \div-0.2$	32	$0 \div-0.2$
KBK 12	4	0.066	12	+8 $\div 0$	22	$0 \div-9$	32	$0 \div-0.2$	42	$0 \div-0.2$
KBK 16	5	0.090	16	+9 $\div-1$	26	$0 \div-9$	36	$0 \div-0.2$	46	$0 \div-0.2$
KBK 20	5	0.149	20	+9 $\div-1$	32	$0 \div-11$	45	$0 \div-0.2$	54	$0 \div-0.2$
KBK 25	6	0.295	25	$+11 \div-1$	40	$0 \div-11$	58	$0 \div-0.3$	62	$0 \div-0.2$
KBK 30	6	0.460	30	$+11 \div-1$	47	$0 \div-11$	68	$0 \div-0.3$	76	$0 \div-0.2$
KBK 40	6	0.995	40	$+13 \div-2$	62	$0 \div-13$	80	$0 \div-0.3$	98	$0 \div-0.3$
KBK 50	6	1.550	50	$+13 \div-2$	75	$0 \div-13$	100	$0 \div-0.3$	112	$0 \div-0.3$
KBK 60	6	2.740	60	$+13 \div-2$	90	$0 \div-15$	125	$0 \div-0.4$	134	$0 \div-0.3$

Tipologia Type	$\begin{gathered} \mathbf{G} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { d1xd2xh } \\ {[\mathrm{mm}]} \end{gathered}$	Tolleranza perpendicolarità flangia Perpendicularity flange tolerance [$\mu \mathrm{m}$]	Eccentricità max Max eccentricity [$\mu \mathrm{m}$]	Tolleranza gioco radiale Radial clearance tolerance [$\mu \mathrm{m}$]	Capacità di Carico Load capacity rating [N]	
								C	C_{0}
KBK 08	25	5	24	$3.4 \times 6.5 \times 3.3$	12	12	-5	270	410
KBK 12	32	6	32	$4.5 \times 8 \times 4.4$	12	12	-5	520	790
KBK 16	35	6	36	$4.5 \times 8 \times 4.4$	12	12	-7	590	910
KBK 20	42	8	43	$5.5 \times 9.5 \times 5.4$	15	15	-9	880	1400
KBK 25	50	8	51	$5.5 \times 9.5 \times 5.4$	15	15	-9	1000	1600
KBK 30	60	10	62	$6.6 \times 11 \times 6.5$	15	15	-9	1600	2800
KBK 40	75	13	80	$9 \times 14 \times 8.6$	20	20	-13	2200	4100
KBK 50	88	13	94	$9 \times 14 \times 8.6$	20	20	-13	3900	8100
KBK 60	106	18	112	$11 \times 17.5 \times 10.8$	25	25	-13	4800	10200

Sigla d'ordine/Specification number: Sigla d'ordine/Specification number:

KBK - d - PP
KBK - d
[tenute in entrambi i lati / seals on both sides].
[senza tenute/ without seals].

Esempio: KBK 20 PP (modello KBK, diametro albero 20 mm , tenute in entrambi i lati).
Example: KBK 20 PP (KBK model, shaft diameter 20 mm , seals on both sides).

Tipologia Type	N° ricircoli Number of ball rows	Peso Weight [kg]	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	Tolleranza Tolerance [$\mu \mathrm{m}$]	$\begin{gathered} \text { D } \\ {[\mathrm{mm}]} \end{gathered}$		anza ance]	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$		$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	D_{1} Tolleranza Tolerance [mm]		
KBKL 08	4	0.046	8	+9 $\div-1$	16	$0 \div$		45	$0 \div-0.3$	32	$0 \div-0.2$		
KBKL 12	4	0.082	12	+9 $\div-1$	22	$0 \div$	-11	57	$0 \div-0.3$	42	$0 \div-0.2$		
KBKL 16	5	0.160	16	+9 $\div-11$	26	$0 \div$	-11	70	$0 \div-0.3$	46	$0 \div-0.2$		
KBKL 20	5	0.230	20	+9 $\div-11$	32	$0 \div$	-13	80	$0 \div-0.3$	54	$0 \div-0.2$		
KBKL 25	6	0.475	25	+13 $\div-2$	40	$0 \div$	-13	112	$0 \div-0.4$	62	$0 \div-0.2$		
KBKL 30	6	0.575	30	+13 $\div-2$	47	$0 \div$	-13	123	$0 \div-0.4$	76	$0 \div-0.2$		
KBKL 40	6	1.380	40	$+16 \div-4$	62	$0 \div$		154	$0 \div-0.4$	98	$0 \div-0.3$		
KBKL 50	6	3.300	50	+16 $\div-4$	75	$0 \div$		192	$0 \div-0.4$	112	$0 \div-0.3$		
KBKL 60	6	4.060	60	+16 $\div-4$	90	$0 \div$	-20	211	$0 \div-0.4$	134	$0 \div-0.3$		
Tipologia Type	$\begin{gathered} \text { G } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{H} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	```d1xd2xh [mm]```	Tolleranza perpendicolarità flangia Perpendicularity flange tolerance $[\mu \mathrm{m}]$		Eccentricità max Max eccentricity [$\mu \mathrm{m}$]		Tolleranza gioco radiale Radial clearance tolerance [$\mu \mathrm{m}$]	Capacità di Carico Load capacity rating [N]			
							C	C_{0}					
KBKL 08	25	5	24	$3.4 \times 6.5 \times 3.3$							-5	431	784
KBKL 12	32	6	32	$4.5 \times 8 \times 4.4$					-5	657	1200		
KBKL 16	35	6	36	$4.5 \times 8 \times 4.4$					-7	1230	2350		
KBKL 20	42	8	43	$5.5 \times 9.5 \times 5.4$					-7	1400	2750		
KBKL 25	50	8	51	$5.5 \times 9.5 \times 5.4$					-9	1560	3140		
KBKL 30	60	10	62	$6.6 \times 11 \times 6.5$					-9	2490	5490		
KBKL 40	75	13	80	$9 \times 14 \times 8.6$					-13	3430	8040		
KBKL 50	88	13	94	$9 \times 14 \times 8.6$					-13	6080	15900		
KBKL 60	106	18	112	$11 \times 17.5 \times 10.8$					-13	7650	20000		

Sigla d'ordine/Specification number: Sigla d'ordine/Specification number:

KBKL-d - PP
KBKL - d
[tenute in entrambi i lati / seals on both sides].
[senza tenute/ without seals].

Esempio: KBKL 20 PP (modello KBKL, diametro albero 20 mm , tenute in entrambi i lati).
Example: KBKL 20 PP (KBKL model, shaft diameter 20 mm , seals on both sides).

Gabbia in poliammide - Polyamide cage

Tipologia Type	N° ricircoli Number of ball rows	Peso Weight [kg]		$\begin{gathered} \mathbf{d} \\ {[\mathrm{mm}]} \end{gathered}$	d Tolleranza Tolerance [$\mu \mathrm{m}$]	$\begin{gathered} \mathrm{D} \\ {[\mathrm{~mm}} \end{gathered}$	D Tolleranza Tolerance [$\mu \mathrm{m}$]		$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	L Tolleranza Tolerance [mm]		$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$		D_{1} Tolleranza Tolerance [mm]
KBH 06	4	0.0		6	$0 \div-9$	12	$0 \div-11$		19		$\div-0.2$	28		$\div-0.2$
KBH 08	4	0.03		8	$0 \div-9$	15	$0 \div-11$		24		$\div-0.2$	32		$\div-0.2$
KBH 10	4	0.06		10	$0 \div-9$	19	$0 \div-13$		29		$\div-0.2$	40		$\div-0.2$
КВН 12	4	0.0		12	$0 \div-9$	21	$0 \div-13$		30		$\div-0.2$	42		$\div-0.2$
KBH 13	4	0.0		13	$0 \div-9$	23	$0 \div-13$		32		$\div-0.2$	43		$\div-0.2$
KBH 16	5	0.1		16	$0 \div-9$	28	$0 \div-13$		37		$\div-0.2$	48		$\div-0.2$
KBH 20	5	0.1		20	$0 \div-10$	32	$0 \div-16$		42		$\div-0.2$	54		$\div-0.2$
KBH 25	6	0.3		25	$0 \div-10$	40	$0 \div-16$		59		$\div-0.3$	62		$\div-0.2$
KBH 30	6	0.3		30	$0 \div-10$	45	$0 \div-16$		64		$\div-0.3$	74		$\div-0.2$
Tipologia Type	$\begin{gathered} \mathrm{W} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{F} \\ {[\mathrm{mm}]} \end{gathered}$	d1xd2xh		leranza endicolarità flangia endicularity		entricità x eccentri		Tolleran rad Radial	gioco e arance	Capacitco Load cap	di Carico city rating]
							e tolerance [$\mu \mathrm{m}$]						C	C_{0}
KBH 06	18	5	20	-	$3.4 \times 6.5 \times 3.3$		12		12		-5		210	270
KBH 08	21	5	24	-	$3.4 \times 6.5 \times 3.3$		12		12		-5		270	410
KBH 10	25	6	29	-	$4.5 \times 8 \times 4.4$		12		12		-5		380	560
KBH 12	27	6	32	-	$4.5 \times 8 \times 4.4$		12		12				420	610
KBH 13	29	6	33	-	$4.5 \times 8 \times 4.4$		12		12		-7		520	790
KBH 16	34	6	31	22	$4.5 \times 8 \times 4.4$		12		12		-7		790	1200
KBH 20	38	8	36	24	$5.5 \times 9.5 \times 5.4$		15		15		-9		880	1400
KBH 25	46	8	40	32	$5.5 \times 9.5 \times 5.4$		15		15		-9		1000	1600
KBH 30	51	10	49	35	$6.6 \times 11 \times 6.5$		15		15		-9		1600	2800

Sigla d'ordine/Specification number: Sigla d'ordine/Specification number:

KBH-d - PP
KBH - d
[tenute in entrambi i lati / seals on both sides]. [senza tenute/ without seals].

Esempio: KBH 20 PP (modello KBH, diametro albero 20 mm , tenute in entrambi i lati).
Example: KBH 20 PP (KBH model, shaft diameter 20 mm , seals on both sides).

KBHL

Cuscinetti per movimentazione lineare - Linear bearings

Gabbia in poliammide - Polyamide cage

Tipologia Type	\mathbf{N}° ricircoli Number of ball rows	Peso Weight $[\mathrm{kg}]$	\mathbf{d} $[\mathrm{mm}]$	\mathbf{d} Tolleranza Tolerance $[\mu \mathrm{m}]$	\mathbf{D} [mm]	\mathbf{D} Tolleranza Tolerance [$\mu \mathrm{m}]$	\mathbf{L} [mm]	\mathbf{L} Tolleranza Tolerance [mm]	$\mathbf{D}_{\mathbf{1}}$ $[\mathrm{mm}]$	$\mathbf{D}_{\mathbf{1}}$ Tolleranza Tolerance [mm]
KBHL 06	4	0.027	6	$0 \div-10$	12	$0 \div-13$	35	$0 \div-0.3$	28	$0 \div-0.2$
KBHL 08	4	0.046	8	$0 \div-10$	15	$0 \div-13$	45	$0 \div-0.3$	32	$0 \div-0.2$
KBHL 10	4	0.091	10	$0 \div-10$	19	$0 \div-16$	55	$0 \div-0.3$	40	$0 \div-0.2$
KBHL 12	4	0.092	12	$0 \div-10$	21	$0 \div-16$	57	$0 \div-0.3$	42	$0 \div-0.2$
KBHL 13	4	0.117	13	$0 \div-10$	23	$0 \div-16$	61	$0 \div-0.3$	43	$0 \div-0.2$
KBHL 16	5	0.165	16	$0 \div-10$	28	$0 \div-16$	70	$0 \div-0.3$	48	$0 \div-0.2$
KBHL 20	5	0.247	20	$0 \div-12$	32	$0 \div-19$	80	$0 \div-0.3$	54	$0 \div-0.2$
KBHL 25	6	0.500	25	$0 \div-12$	40	$0 \div-19$	112	$0 \div-0.4$	62	$0 \div-0.2$
KBHL 30	6	0.580	30	$0 \div-12$	45	$0 \div-19$	123	$0 \div-0.4$	74	$0 \div-0.2$

Tipologia	W	H	A		d1xd2xh	Tolleranza perpendicolarità flangia Perpendicularity flange	Eccentricità max Max eccentricity	Tolleranza gioco radiale Radial clearance	Capacità di Carico Load capacity rating [N]	
						tolerance [$\mu \mathrm{m}$]		[$\mu \mathrm{m}$]	C	C_{0}
KBHL 06	18	5	20	-	$3.4 \times 6.5 \times 3.3$	15	15	-5	330	540
KBHL 08	21	5	24	-	$3.4 \times 6.5 \times 3.3$	15	15	-5	440	800
KBHL 10	25	6	29	-	$4.5 \times 8 \times 4.4$	15	15	-5	600	1120
KBHL 12	27	6	32	-	$4.5 \times 8 \times 4.4$	15	15	-5	670	1220
KBHL 13	29	6	33	-	$4.5 \times 8 \times 4.4$	15	15	-7	830	1600
KBHL 16	34	6	31	22	$4.5 \times 8 \times 4.4$	15	15	-7	1250	2400
KBHL 20	38	8	36	24	$5.5 \times 9.5 \times 5.4$	20	20	-9	1430	2800
KBHL 25	46	8	40	32	$5.5 \times 9.5 \times 5.4$	20	20	-9	1590	3200
KBHL 30	51	10	49	35	$6.6 \times 11 \times 6.5$	20	20	-9	2540	5600

Sigla d'ordine/Specification number: Sigla d'ordine/Specification number:

KBHL-d-PP
KBHL-d
[tenute in entrambi i lati / seals on both sides]. [senza tenute/ without seals].

Esempio: KBHL 20 PP (modello KBHL, diametro albero 20 mm , tenute in entrambi i lati).
Example: KBHL 20 PP (KBHL model, shaft diameter 20 mm , seals on both sides).

Autoallineanti - Self-aligning

Tipologia Type	N° ricircoli Number of ball rows	Peso Weight [kg]	Dimensioni Dimensions				Givoco radiale Radial clearance			Capacità di Carico Load capacity rating [N]	
			$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} B \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{B}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{h} 7 / \mathrm{H} 7 \\ {[\mu \mathrm{~m}]} \end{gathered}$	$\begin{gathered} \text { h7/JS7 } \\ {[\mu \mathrm{m}]} \end{gathered}$	$\begin{gathered} \text { h6/JS6 } \\ {[\mu \mathrm{m}]} \end{gathered}$	C	C_{0}
KN 1232	5	0.023	12	22	32	20	+32 $+\quad 3$	$\begin{array}{r} +28 \\ -\quad 1 \\ \hline \end{array}$	$\begin{array}{r} +22 \\ \hline \end{array}$	650	520
KN 1636	5	0.028	16	26	36	22	+32 $+\quad 3$	+28 $+\quad 1$	$\begin{array}{r} +22 \\ \hline \end{array}$	800	630
KN 2045	6	0.061	20	32	45	28	$\begin{array}{r} +37 \\ +\quad 4 \\ \hline \end{array}$	$\begin{array}{r} +30 \\ -\quad 2 \\ \hline \end{array}$	$\begin{array}{r} +24 \\ \hline \end{array}$	1500	1250
KN 2558	6	0.122	25	40	58	40	$\begin{array}{r} +37 \\ +\quad 5 \\ \hline \end{array}$	$\begin{array}{r} +31 \\ +\quad 2 \\ \hline \end{array}$	$\begin{array}{r} +24 \\ \hline \end{array}$	2500	2200
KN 3068	6	0.185	30	47	68	48	$\begin{array}{r} +39 \\ +\quad 3 \\ \hline \end{array}$	$\begin{array}{r} +33 \\ -\quad 3 \\ \hline \end{array}$	$\begin{array}{r} +27 \\ \hline \end{array}$	3200	2800
KN 4080	6	0.360	40	62	80	56	$\begin{aligned} & +42 \\ & +\quad 1 \\ & \hline \end{aligned}$	$\begin{array}{r} +34 \\ -\quad 6 \\ \hline \end{array}$	$\begin{array}{r} +27 \\ -\quad 4 \\ \hline \end{array}$	5500	4900
KN 50100	6	0.580	50	75	100	72	+41	+26 $+\quad 7$	+26 $-\quad 4$	8600	7100

Sigla d'ordine/Specification number:
Sigla d'ordine/Specification number:
$K N-d-P P$
KN -d
[tenute in entrambi i lati / seals on both sides]. [senza tenute/ without seals].

Esempio: KN 20 PP (modello KN, diametro albero 20 mm , tenute in entrambi i lati).
Example: KN 20 PP (KN model, shaft diameter 20 mm , seals on both sides).

Autoallineanti - Self-aligning

Tipologia Type	N° ricircoli Number of ball rows	Peso Weight [kg]	Dimensioni Dimensions						Givoco radiale Radial clearance			Capacità di Carico Load capacity rating [N]	
			$\underset{[\mathrm{mm}]}{\mathrm{d}}$	$\begin{gathered} \mathrm{D} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { B } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{Br}_{[} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{E} \\ {[\mathrm{~mm}]} \end{gathered}$	α	$\begin{gathered} \text { h7/H7 } \\ {[\mu \mathrm{m}]} \end{gathered}$	$\begin{gathered} \mathrm{h} 7 / \mathrm{JS7} \\ {[\mu \mathrm{~m}]} \end{gathered}$	$\begin{gathered} \text { h6/JS6 } \\ {[\mu \mathrm{m}]} \end{gathered}$	C	C_{0}
KNO 1232	4	0.018	12	22	32	20	6.5	66°	$\begin{array}{r}+32 \\ +\quad 3 \\ \hline\end{array}$	$\begin{array}{r}+28 \\ +\quad 1 \\ \hline\end{array}$	+22	750	600
KNO 1636	4	0.022	16	26	36	22	9	68°	+32 $+\quad 3$	+28 $-\quad 1$	+22	920	730
KNO 2045	5	0.051	20	32	45	28	9	55°	+37 $+\quad 4$	+30 $-\quad 2$	124 0	1560	1240
KNO 2558	5	0.102	25	40	58	40	11.5	57°	$\begin{array}{r} +37 \\ +\quad 5 \\ \hline \end{array}$	$\begin{array}{r} +31 \\ -\quad 2 \\ \hline \end{array}$	+24 0	2600	2260
KNO 3068	5	0.155	30	47	68	48	14	57°	+39 $+\quad 3$	+33 $-\quad 3$	+27 0	3330	2850
KNO 4080	5	0.300	40	62	80	56	19.5	56°	$\begin{aligned} & +42 \\ & +\quad 1 \\ & \hline \end{aligned}$	+34 $-\quad 6$	$\begin{array}{r} +27 \\ -\quad 4 \\ \hline \end{array}$	5720	4900
KNO 50100	5	0.480	50	75	100	72	22.5	54°	+41	$\begin{array}{r}+26 \\ -\quad 7 \\ \hline\end{array}$	$\begin{array}{r}+26 \\ -\quad 4 \\ \hline\end{array}$	8940	7200

Sigla d'ordine/Specification number: Sigla d'ordine/Specification number:

KNO - d-PP
KNO - d
[tenute in entrambi i lati / seals on both sides]. [senza tenute/ without seals].

Esempio: KNO 20 PP (modello KNO, diametro albero 20 mm , tenute in entrambi i lati).
Example: KNO 20 PP (KNO model, shaft diameter 20 mm , seals on both sides).

CUSCINETTI PER MOVIMENTAZIONE LINEARE

 LINEAR BEARINGSSupporti - Linear case units

I supporti NBS si suddividono in:

Serie normale:

- standard (SC)
- corti (SCV)
- lunghi (SCW)

Serie aperta:

- non flangiati (SBR)
- flangiati

Tutti possono essere forniti con:

- anelli di tenuta in entrambi i lati (suffisso - UU)
- senza anelli di tenuta (nessun suffisso).

NBS linear case units can be divided into:

Normal series:

- standard (SC)
- short (SCV)
- long (SCW)

Open series:

$\begin{array}{ll}\text { - not flanged (SBR) } \\ \text { - flanged } & \text { (TBR) }\end{array}$
They can be supplied with:

- seals on both sides (suffix - UU)
- without seals (no suffix).

SC
Supporti - Linear case units

$\begin{array}{\|l\|} \hline \text { Tipologia } \\ \text { Type } \end{array}$	Peso Weight [kg]	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{W} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{F} \\ {[\mathbf{m m}]} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{h} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{G} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { A } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \text { B } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \text { C } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{K} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{S}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{S}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	Capacità di Carico Load capacity rating [N]	
															C	C_{0}
SC 08	0.056	8	34	22	30	11	18	6	5	24	18	5	M 4	3.4	280	400
SC 10	0.090	10	40	26	35	13	21	8	6	28	21	6	M 5	4.3	380	560
SC 12	0.112	12	44	30	36	15	25	12	8	33	26	5.75	M 5	4.3	420	610
SC 13	0.123	13	44	30	39	15	24.5	8	5.5	33	26	5.5	M 5	4.3	520	800
SC 16	0.189	16	50	38.5	44	19	32.5	9	7	36	34	7	M 5	4.3	790	1200
SC 20	0.237	20	54	42	53	21	35	11	7	40	40	7	M 6	5.2	900	1400
SC 25	0.555	25	76	51.5	67	26	42	12	11	54	50	11	M 8	6.8	1000	1600
SC 30	0.685	30	78	59.5	76	30	49	18	10	58	58	10	M 8	6.8	1600	2800
SC 35	1.100	35	90	68	80	34	54	18	10	70	60	10	M 8	6.8	1700	3200
SC 40	1.600	40	102	78	90	40	62	20	11	80	60	11	M10	8.6	2200	4100
SC 50	3.350	50	122	102	110	52	80	25	11	100	80	11	M 10	8.6	3900	8100
SC 60	4.270	60	132	114	122	58	94	30	21	108	90	12	M12	10.7	4800	10200

Sigla d'ordine/Specification number: Sigla d'ordine/Specification number:

SC-d-UU
SC-d
SC-d-UU AS
SC-d-AS
[tenute in entrambi i lati / seals on both sides]. [senza tenute/ without seals].
[tenute in entrambi i lati e foro di lubrificazione/ seals on both sides and oil hole].
[senza tenute, con foro di lubrificazione/ without seals, with oil hole].

Esempio: SC 20 UU AS (modello SC, diametro albero 20 mm , tenute in entrambi i lati, foro di lubrificazione). Example: SC 20 UU AS (SC model, shaft diameter 20 mm , seals on both sides, with oil hole).

SCV
Supporti - Linear case units

Tipologia Type	Peso Weight [kg]	$\underset{[\mathrm{mm}]}{\mathrm{d}}$	W	$\begin{gathered} \mathrm{F} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{L} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{h} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{G} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} B \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{A} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{S}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{S}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	Capacità di Carico Load capacity rating [N]	
			[mm]											C	C_{0}
SCV 08	0.025	8	34	22	15.4	11	18	6	24	6	5	M 4	3.4	274	392
SCV 10	0.092	10	40	26	19.5	13	21	8	28	6	6	M 5	4.3	380	560
SCV 12	0.065	12	44	30	20.5	15	24.5	12	33	8	5.5	M 5	4.3	510	784
SCV 13	0.120	13	44	30	20.5	15	24.5	8	33	5.5	5.5	M 5	4.3	520	800
SCV 16	0.100	16	50	38.5	23.5	19	32.5	9	36	9	7	M 5	4.3	774	1180
SCV 20	0.148	20	54	41	28.3	21	35	11	40	11	7	M 6	5.2	882	1370
SCV 25	0.368	25	76	51.5	40.4	26	42	12	54	12	11	M 8	7	980	1570
SCV 30	0.500	30	78	59.5	40.9	30	49	15	58	15	10	M 8	7	1574	2740
SCV 35	1.100	35	90	68	45.4	34	54	18	70	10	10	M 8	6.8	1700	3200
SCV 40	1.000	40	102	78	56.4	40	62	20	80	20	11	M 10	8.7	2160	4020
SCV 50	2.205	50	122	102	69.9	52	80	25	100	25	11	M 10	8.7	3820	7940

Sigla d'ordine/Specification number: Sigla d'ordine/Specification number:

SCV - d-UU
SCV - d
SCV - d - UU AS

SCV - d - AS
[tenute in entrambi i lati / seals on both sides]. [senza tenute/ without seals].
[tenute in entrambi i lati e foro di lubrificazione/
seals on both sides and oil hole].
[senza tenute, con foro di lubrificazione/
without seals, with oil hole].

Esempio: SCV 20 UU AS (modello SCV, diametro albero 20 mm , tenute in entrambi i lati, foro di lubrificazione).
Example: SCV 20 UU AS (SCV model, shaft diameter 20 mm, seals on both sides, with oil hole).

SCW
Supporti - Linear case units

Tipologia Type	Peso Weight [kg]	$\underset{[\mathrm{mm}]}{\mathrm{d}}$	$\begin{gathered} \mathrm{W} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{F} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{L} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{h} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{G} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { B } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{C} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{S}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{S}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	Capacità di Carico Load capacity rating [N]	
															C	C_{0}
SCW 08	0.102	8	34	22	58	11	18	6	8	24	42	5	M 4	3.4	440	800
SCW 10	0.106	10	40	26	68	13	21	8	10	28	46	6	M 5	4.3	600	1120
SCW 12	0.205	12	44	30	77	15	26	8	10	33	64	5.5	M 5	4.3	670	1200
SCW 16	0.400	16	50	38.5	89	19	35	9	12	36	79	7	M 5	4.3	1250	2400
SCW 20	0.570	20	54	42	106	21	36	11	12	40	90	7	M 6	5.2	1440	2800
SCW 25	1.200	25	76	51.5	136	26	41	12	18	54	119	11	M 8	6.8	1640	3200
SCW 30	1.480	30	78	59.5	154	30	49	15	18	58	132	10	M 8	6.8	2500	5600
SCW 35	2.200	35	90	68	155	34	54	18	18	70	120	10	M 8	6.8	2700	6400
SCW 40	3.200	40	102	78	180	40	62	20	25	80	150	11	M 10	8.6	3500	8200
SCW 50	6.700	50	122	102	215	52	80	25	25	100	160	11	M 10	8.6	6200	16200
SCW 60	8.560	60	132	114	240	58	94	30	25	108	180	12	M 12	10.7	7700	20400

Sigla d'ordine/Specification number: Sigla d'ordine/Specification number:

SCW - d-UU
SCW - d
SCW - d - UU AS
SCW - d - AS
[tenute in entrambi i lati/ seals on both sides].
[senza tenute/ without seals].
[tenute in entrambi i lati e foro di lubrificazione/
seals on both sides and oil hole].
[senza tenute, con foro di lubrificazione/ without seals, with oil hole].

Esempio: SCW 20 UU AS (modello SCW, diametro albero 20 mm , tenute in entrambi i lati, foro di lubrificazione).
Example: SCW 20 UU AS (SCW model, shaft diameter 20 mm , seals on both sides, with oil hole).
Note: Il supporto SCW viene fornito standard AS (con foro di lubrificazione).
Note: SCW support is supplied standard AS (with oil hole).

CUSCINETTI PER MOVIMENTAZIONE LINEARE LINEAR BEARINGS

Tipologia Type	Peso Weight [kg]	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{B}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{e} \\ {[\mathrm{mm}]} \end{gathered}$	α	$\begin{gathered} \mathrm{h} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{J} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{N} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{W} \\ {[\mathrm{~mm}]} \end{gathered}$	Capacità di Carico Load capacity rating [N]	
														C	C_{0}
SBR 16	0.150	16	9	45	30	M 5	10	80°	20	33	32	12	45	590	910
SBR 20	0.200	20	11	50	35	M 6	10	60°	23	39	35	12	48	880	1400
SBR 25	0.450	25	14	65	40	M 6	11.5	50°	27	47	40	12	60	1000	1600
SBR 30	0.630	30	15	70	50	M 8	14	50°	33	56	50	18	70	1600	2800
SBR 40	1.330	40	20	90	65	M10	19	50°	42	72	65	20	90	2200	4100
SBR 50	3.000	50	25	110	80	M 10	23	50°	53	91	94	20	120	3900	8100

Sigla d'ordine/Specification number: Sigla d'ordine/Specification number:

SBR - d-UU
SBR-d-UU AS
[tenute in entrambi i lati / seals on both sides]. [tenute in entrambi i lati e foro di lubrificazione/ seals on both sides and oil hole].

Esempio: SBR 20 UU AS (modello SBR, diametro albero 20 mm , tenute in entrambi i lati, foro di lubrificazione).
Example: SBR 20 UU AS (SBR model, shaft diameter 20 mm , seals on both sides, with oil hole).

Tipologia Type	Peso Weight [kg]	$\underset{[\mathrm{mm}]}{\mathrm{d}}$	$\begin{gathered} \mathbf{A} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{B}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{e} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathbf{h} \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{J} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{W} \\ {[\mathrm{~mm}]} \end{gathered}$	Capacità di Carico Load capacity rating [N]	
												C	C_{0}
TBR 16	0,180	16	8	42	30	M 5	10	17.9	27	50	62	392	490
TBR 20	0.300	20	10	51	37	M6	10	21	31.4	54	68	784	1176
TBR 25	0.600	25	12	65	50	M 8	11.5	28	41	65	82	1568	2352
TBR 30	0.900	30	12	75	60	M 8	14	33.5	48	75	91	1764	2940

Sigla d'ordine/Specification number: Sigla d'ordine/Specification number:

$$
\begin{aligned}
& \text { TBR - d - UU } \\
& \text { TBR - d - UU AS }
\end{aligned}
$$

[tenute in entrambi i lati / seals on both sides]. [tenute in entrambi i lati et trou de lubrification / seals on both sides and oil hole].

Exemple: TBR 20 UU AS (modèle TBR, diamètre arbre 20 mm , joints des deux côtés, trou de lubrification).
Example: TBR 20 UU AS (TBR model, shaft diameter 20 mm , seals on both sides, with oil hole).

Sur demande est aussi disponible le modèle TBR 40
By request TBR 40 model is available too.

Sistemi completi - Integral system

4. Sistemi completi

4. Integral systems

I sistemi completi NBS sono composti da: supporto scorrevole + albero con supporto albero già assemblato

Si suddividono in:

- serie non flangiata (SBR-S)
- serie flangiata (TBR-S)

Integral NBS systems are composed by: linear case unit + shaft with shaft support just assembled

They are divided into:

- not flanged series (SBR-S)
- flanged series (TBR-S)

SBR-S

Tipologia Type	Supporto Case Unit	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathrm{A}}$	$\begin{gathered} \mathrm{B}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{D}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{4} \\ {[\mathrm{~mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathrm{f}}$	$\begin{gathered} \text { ho } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} h_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathrm{H}}$	$\begin{gathered} \mathrm{H}_{0} \\ {[\mathrm{~mm}]} \end{gathered}$	$\underset{[\mathrm{mm}]}{\mathrm{J}}$	$\underset{[\mathrm{mm}]}{\mathrm{N}}$	$\begin{gathered} \mathrm{S}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{S}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{W} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathbf{P} \\ {[\mathrm{mm}]} \end{gathered}$	$L_{\text {max }}$ [mm]
SBR 16S	SBR16UU	16	9	45	30	M 5	5.5	5.5	9.5	5.4	25	17.8	33	45	32	12	40	30	5	45	150	4000
SBR 20S	SBR20UU	20	11	50	35	M 6	5.5	5.5	9.5	5.4	27	17.7	39	50	35	12	45	30	5	48	150	4000
SBR 25S	SBR25UU	25	14	65	40	M 6	6.6	6.6	11	6.5	33	21	47	60	40	12	55	35	6	60	200	4000
SBR 30S	SBR30UU	30	15	70	50	M 8	6.6	6.6	11	6.5	37	22.8	56	70	50	18	60	40	7	70	200	4000
SBR 40S	SBR40UU	40	20	90	65	M10	9	9	14	8.6	48	29.4	72	90	65	20	75	55	9	90	200	3000
SBR 50S	SBR50UU	50	25	110	80	M10	11	11	7.5	10.8	62	38.8	91	105	94	20	95	70	11	120	200	3000

Misure della lunghezza a richiesta.

Under request different lenghts available.

Sigla d'ordine per albero completo di
supporto albero già montato:
SBR - d - S - Longueur L.
Specification number for shaft + shaft support just assembled:
SBR - d - S - Lenght L.

Sigla d'ordine per supporto scorrevole:
Specification number for linear case unit:

SBR - d - UU - AS
SBR - d - UU - AS
[tenute in entrambi i lati e foro di lubrificazione/ seals on both sides and oil hole].

CUSCINETTI PER MOVIMENTAZIONE LINEARE LINEAR BEARINGS
Sistemi completi - Integral system

Tipologia Type	Supporto Case Unit	$\begin{gathered} \mathrm{d} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{A} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{B}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{B}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{3} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} D_{4} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} f \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \text { ho } \\ {[\mathrm{mm}]} \end{gathered}$	$\begin{gathered} h_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{H} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{H}_{0} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{J} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{S}_{1} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{S}_{2} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} \mathrm{T} \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} W \\ {[\mathrm{~mm}]} \end{gathered}$	$\begin{gathered} P \\ {[\mathrm{~mm}]} \end{gathered}$	$L_{\text {max }}$ [mm]
TBR 16S	TBR16UU	16	8	42	30	M 5	5.5	5.5	9.5	5.4	22.1	15	26	40	50	50	37	6	62	150	4000
TBR 20S	TBR20UU	20	10	51	37	M6	5.5	5.5	9.5	5.4	29	19.4	31	50	54	55	40	8	68	150	4000
TBR 25S	TBR25UU	25	12	65	50	M8	6.6	6.6	11	6.5	32	20.1	41	60	65	65	45	10	82	200	4000
TBR 30S	TBR30UU	30	12	75	60	M8	6.6	6.6	11	6.5	36.5	22.5	48	70	75	75	55	12	91	200	4000

Misure della lunghezza a richiesta.

Under request different lenghts available.
Sigla d'ordine per albero completo di
supporto albero già montato:
TBR - d - S - Lunghezza L.
Specification number for shaft + shaft support just assembled: TBR - d - S - Lenght L.

Sigla d'ordine per supporto scorrevole:
Specification number for linear case unit:
TBR - d - UU - AS
TBR - d - UU - AS
[tenute in entrambi i lati e foro di lubrificazione/ seals on both sides and oil hole].

