

POWER > SPEED > TORQUE

NEW TURBOSTART INDUSTRIAL BRAKE

TECHNICAL CATALOGUE INDUSTRIAL BRAKE

New Turbostart s.r.l. was born in 1958, its corporate purpose is the production and sale of mechanical and hydraulic drives; the company has always been renowned for their new products reliability and professional service offered to clientele. It is a compact structure, efficient and always ready to solve the most varied problems of customers, succeding in realizing even personalized products, guaranteeing, at the same time, rapidity and prompt deliveries. Over the years, it has always followed quality objectives, **officially recognized on several occasions all over the world**.

New Turbostart is in continual development, both in Italy and abroad (all continents) where it is selling hydrodynamic and hydromechanic couplings without slip at continuous running and 100% efficiency, couplings in cast iron for mines applications for powers ranging from 0,37 to 2.200 Kw, both for in line and pulley assembly, and also disk brake, drum brake, and all metal flexible couplings.

The administration and commercial offices are placed in Milan – Segrate, while production factory is located in Borgo Ticino – Novara, which is owned by New Turbostart and it covers 7.000 sq.m.

The factory is equipped with numerically controlled operating machines; processing of all particulars are carried out inside, as well as assembly and testing, whereas castings are made by skilled foundries in primary aluminium alloy

New Turbostart is certified, according to **UNI EN ISO 9001 – 2008** regulation, and it can supplies couplings in according ATEX Certification.

- 1. Index
- 2. Products
- 3. Drum brake Type NC
- 4. Drum brake Type NC Dimensions
- 5. Drum brake Type NC Pneumatic
- 6. Drum brake Type ST
- 7. Drum brake Type ST Dimensions
- 8. Drum brake Type ST Description
- 9. Drum brake Type ST Optional
- 10. Disk brake Type ODB
- 11. Disk brake Type ODB Optionals
- 12. Disk brake Type ODB Data
- 13. Disk brake Type ODB Dimensions
- 14. Thrustors ELCO Type Th. 1 2 3
- 15. Thrustors ELCO Type Th. 3.75
- 16. Thrustors ELCO Type Th. 4
- 17. Thrustors ELCO Type Th. 4.12
- 18. Thrustors ELCO Type Th. 5 6
- 19. Thrustors ELCO Type Th. 5.12 6.12
- 20. Industrial brake Optionals
- 21. Industrial brake Optionals

Drum brakes type NC to standard DIN 15435

NC Brake released by pneumatic cylinder

Drum Brakes type St

Type Sth

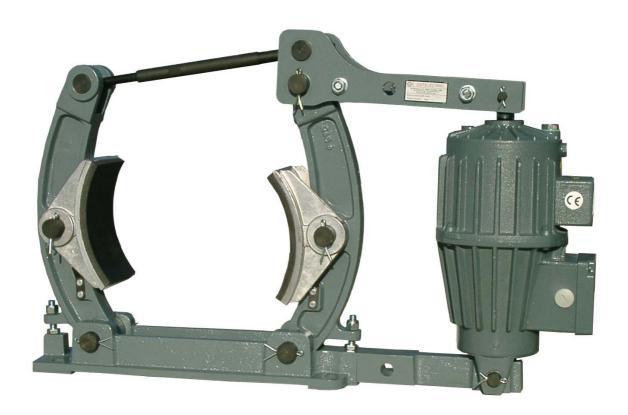
St brake released by pneumatic cylinder

Disc Brakes type ODB

Disc Brakes type ODB 0

Disc Brakes type ODB Double

Safety Brakes FDE


Braking Drums with Coupling

Braking Discs with Coupling

Applications

Lifting installations, cranes, winches, conveyors, elevators, movable bridges, rolling-mill drives, ski lift.

Working principle

The braking occurs by cutting power to thrustor motor. Thanks to the action of a spiral spring, housed inside the thrustor and pushing the piston rod along with the brake lever downwards, the two arms, holding the jaws, approach to each other, thus setting the brake. Electric power at thrustor motor let overcome the spring action, thereby releasing the brake. On demand, the brake may be provided with external spring rather than the internal one.

Materials

Base and brake arms in ductile cast iron. Levers in steel Fe510. Pins and rod in galvanized or phosphorized steel C40. Jaws in aluminium league, provided with clamping springs.

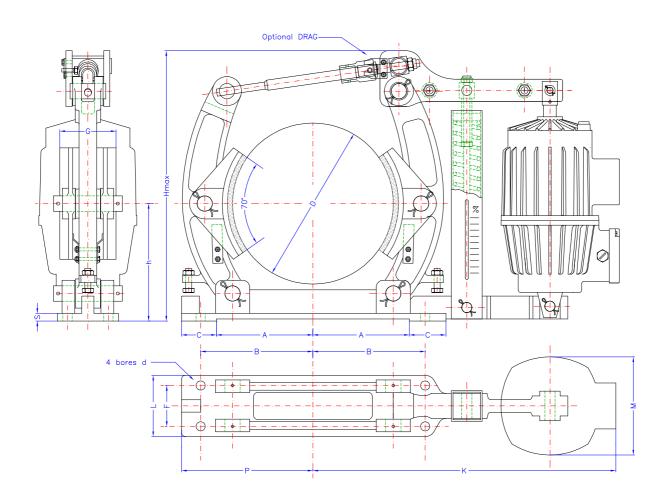
Friction linings

Linings in asbestos free material with friction coefficient about 0,42 bonded to the shoes.

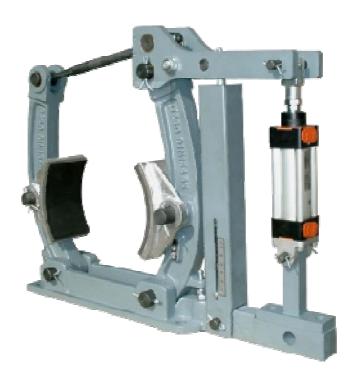
Surface protection

Epoxy primer coat and final tint colour RAL 7031

Design


The over-sized base and arms bestow stability and reliability to the brake. Thanks to large pins, acting into self lubricated pins, frictions are reduced at lowest, although maintaining high precision in arm and lever swinging.

Braking torque and braking spring


Braking spring is housed inside the thrustor and is designed to develop the highest braking torque. If reduction and adjusting of braking torque is needed – as in horizontal drives of bridge cranes without inverter controlling – it is worthwhile to utilize the optional external braking spring, rather than the internal one.

Electro-hydraulic thrustors

Casing in aluminium league, enclosure IP 56, rated for continuous as well as intermittent duty up to 2000 switching/hour. Standard tension is 3-phase 220/380 V, 50 Hz, but voltage variation up to ± 10% doesn't affect performance. Special tensions are available on demand. Thrustors require an easy maintenance and are delivered with complete oil filling.

	Braking						D	imensio	ns in mn	n						Weight
Brake type	torque Nm	D	Α	В	С	d	F	G	h	Hma x.	L	К	М	Р	S	Kg.
NC200-Th1	230	200	115	145	55	14	55	70	160	430	90	422	142	165	12	25
NC200-Th2	310	200	115	145	55	14	55	70	160	470	90	450	168	165	12	30
NC250-Th1	260	200	144	180	62	18	65	90	190	485	100	476	142	208	14	38
NC250-Th2	350	250	144	180	62	18	65	90	190	485	100	501	168	208	14	43
NC250-Th3	700	250	144	180	62	18	65	90	190	500	100	510	192	208	14	45
NC315-Th1	285	315	189	220	68,5	18	80	110	230	532	120	536	174	257,5	15	48
NC315-Th2	425	315	189	220	68,5	18	80	110	230	532	120	593	168	257,5	15	53
NC315-Th3	850	315	189	220	68,5	18	80	110	230	532	120	601	192	257,5	15	55
NC315-Th3.75	1050	315	189	220	68,5	18	80	110	230	532	120	601	192	257,5	15	55
NC315-Th4	1700	315	189	220	68,5	18	80	110	230	565	120	618	234	257,5	15	62
NC400-Th2	525	400	240	270	74	22	100	140	280	668	150	687	168	314	17	79
NC400-Th3	1040	400	240	270	74	22	100	140	280	668	150	695	192	314	17	81
NC400-Th3.75	1300	400	240	270	74	22	100	140	280	668	150	695	192	314	17	81
NC400-Th4	2075	400	240	270	74	22	100	140	280	668	150	715	234	314	17	88
NC500-Th4	2500	500	295	325	85	22	130	180	340	760	170	812	234	380	20	130
NC500-Th5	4170	500	295	325	85	22	130	180	340	785	170	823	274	380	20	153

Materials

Base and brake arms in ductile cast iron. Levers in steel Fe510. Pins and rod in galvanized or phosphorized steel C40. Jaws in aluminium league, provided with clamping springs.

Friction linings

Linings in asbestos free material with friction coefficient about 0,42 bonded to the shoes.

Surface protection

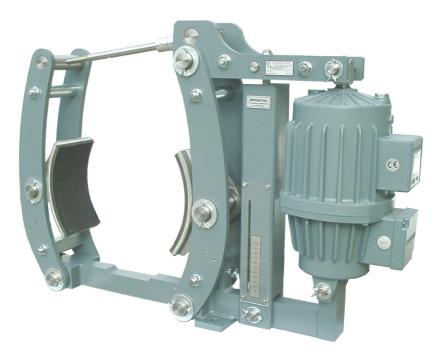
Epoxy primer coat and final tint colour RAL 7031

Design

The over-sized base and arms bestow stability and reliability to the brake. Thanks to large pins, acting into self lubricated pins, frictions are reduced at lowest, although maintaining high precision in arm and lever swinging.

Braking torque

The pressure is provided by a spiral spring inside of a square tube with scale to ease torque setting. The braking torque can be reduced downward to nearly 20% of rating, to suit characteristics of load by adjusting the spring tension.

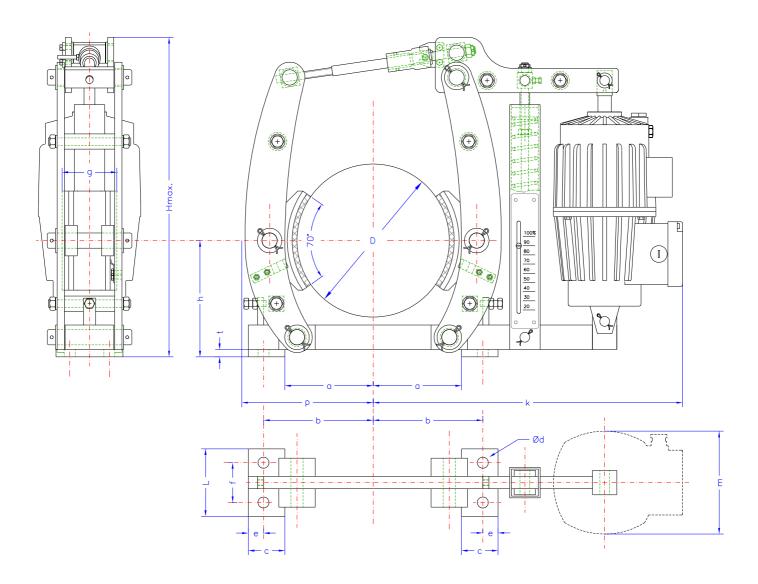

Pneumatic cylinder

Structure in anodised aluminium with chromium plated rod. The cylinder acts with double effect and is provided with end stroke shock absorbers. It is designed to operate at 5 atm air pressure.

Drum brake type St to standard DIN 15435

Features

- Compact design
- Easy installation and maintenance
- Asbestos-free linings bonded to easily replaceable shoes
- Large diameter stainless steel pins working in self-lubricated bushings
- Throughout galvanised frame work
- Standard self-adjusting lining wear mechanism
- Supply 3-phase 220/380 V, 50 Hz



St315 Th3

Options

- Hand release
- Brake release limit switch
- Lining wear limit switch
- Shoes with increased width
- Special voltage/frequencies
- Thrustor in HR design for high
- temperature
- Thrustor with time delay valve
- Pneumatic or hydraulic actuator

	Thrustor	Max							Dime	ensi	ons	(mm)						Weight
Brake type	Thrustor type ELCO	torque in Nm μ =0,4	D	а	р	C	đ	Φ	f	g	h	H	k	L	m	р	t	without thrustor Kg
St 200	Th 1	250										405	417		142			
St 200	Th 2	330	200	115	145	50	14	20	55	70	160	492	453	92	168	170	10	24
St 250	Th 1	300											483		142			
St 250	Th 2	400	250	145	180	60	18	25	65	90	190	525	508	110	168	212	12	32
St 250	Th 3	750	250	145	160	60	10	25	65	90	190	525	516	110	192	212	12	32
St 315	Th 1	350											553		142			
St 315	Th 2	480											578		168			
St 315	Th 3	950	315	180	220	70	18	30	80	110	230	586	586	120	192	263	12	48
St 315	Th 4	1800											605		234			
St 400	Th 2	680											665		168			
St 400	Th 3	1300	400	230	270	70	22	30	100	140	280	702	673	150	192	314	15	85
St 400	Th 4	2500	400	230	270	70	22	30	100	140	200	702	692	130	234	314	13	00
St 500	Th 3	1600											803		192			
St 500	Th 4	3100	500	285	325	80	22	40	130	180	340	833	822	180	234	395	15	150
St 500	Th 5	5120	300	200	323	00	22	40	130	100	340	000	833	100	274	333	13	130
St 630	Th 4	3100											898		234			
St 630	Th 5	5000	630	340	400	95	27	40	170	225	420	1010	909	250	274	468	20	210
St 630	Th 6	7200	030	340	+00	90	۷.	40	170	223	420	1010	909	200	274	400	20	210

St-brakes are spring-set drum brakes released by electro-hydraulic thrustors. Removal or loss of power causes the brake to set and stop the motor or driven load. They work fail-safe and their easiness to apply and remove braking pressure smoothly make them highly suitable for applications on lifting plants such as cranes, conveyors and elevators, as well as on movable bridges and rolling-mill drives.

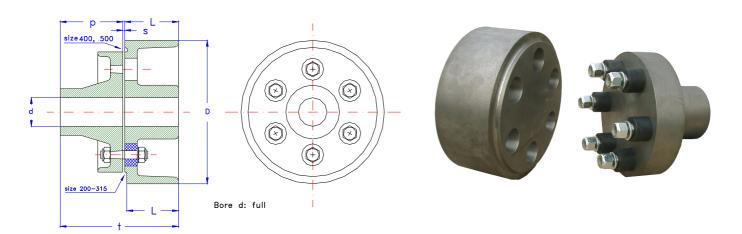
Material

Framework in welded steel protected through galvanisation, epoxy primer coat and final tint RAL 7031 painting. Brake shoes are in aluminium league. Rod and large-diameter pins are made of stainless steel and turn in self-lubricating, close-tolerance, bronze bushings. Friction linings in asbestos free high temperature resistant materials are bonded to the shoes.

Installation

Since all brake are provided with lining compensator only two simple adjustments are required:

- A- Shoe clearance
- B- Brake torque


Self-adjusting mechanism

It provides for automatic readjusting of shoe clearance. It acts progressively with lining wear through a free wheel device.

Braking torque

The pressure is provided by a spiral spring inside of a square tube with scale to ease torque setting. The braking torque can be reduced downward to 20% of rating, to suit characteristics of load, by adjusting the spring tension.

Brake drum with coupling to standard DIN 15431 with radial mounted rubber elements

_	Cast iron G25	D	d max	L	р	t	S	n° rubber elements	Weight Kg	J Kgm²
	GEF 200	200	42	75	110	199	4	4	18	0,075
	GEF 250	250	60	95	145	254	4	6	33	0,200
	GEF 315	315	70	118	145	283	5	6	58	0,550
	GEF 400	400	80	150	175	330	5	6	101	1,625
	GEF 500	500	90	190	180	376	6	6	177	5,000
	GEF 630	630	110	236	225	468	7	8	310	13,750

Optional

Brake release limit switch It is fitted on the spring housing and might be either electro-mechanic or contact-free. It features one NO- and one NC-contact for signalling that the brake has been released.

Lining wear limit switch It is fitted in the brake rod and might be either electromechanical or contact-free. It features one NO-and one NC-contact for signalling that the lining has been worn out and needs replacement.

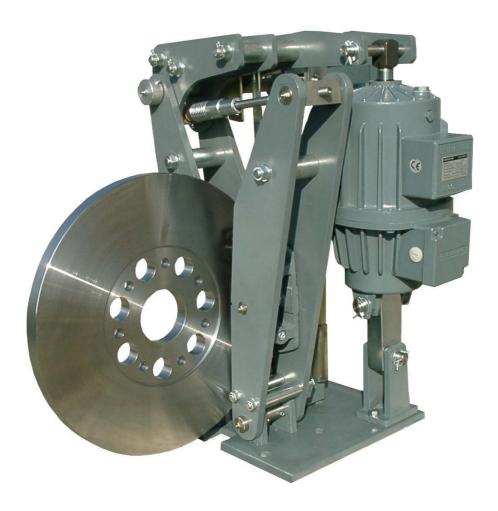
Hand release lever Enables removal of wheel or replacing brake shoes without adjustment of torque setting. Thanks to a lever of suitable length and an elliptical moulding the brake can be easily released with little human effort and left in released position.

Wider shoes Shoes with extended width (+50%) are employed in some crane motions, where a bigger brake energy dissipation rating is needed.

Thrustor with time delay valve The piston lowering and/or lifting time can be adjusted through a proper valve. This option is very useful when the brake has to be utilised only for emergency purpose. Thanks this device the lowering and/or lifting time can be extended up to 5-6 sec.

Thrustor in HR- design The "Heat Resistant" design is particularly utilised in very hot environment such as casting steelwork cranes, where temperature might achieve 212°F (100°C).

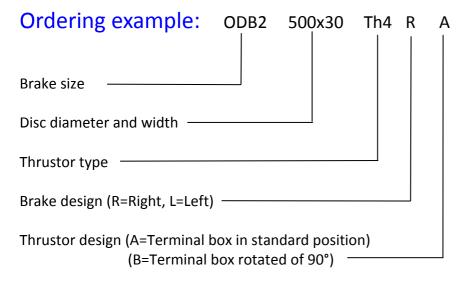
Special design

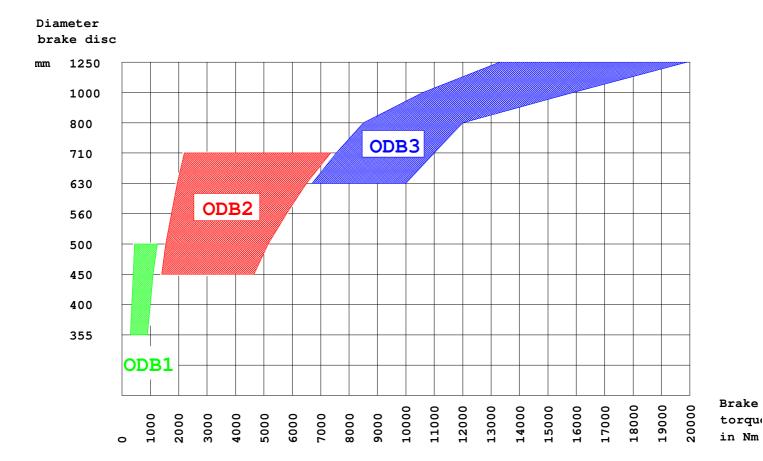

Sth-brake with thrustor in horizontal layout

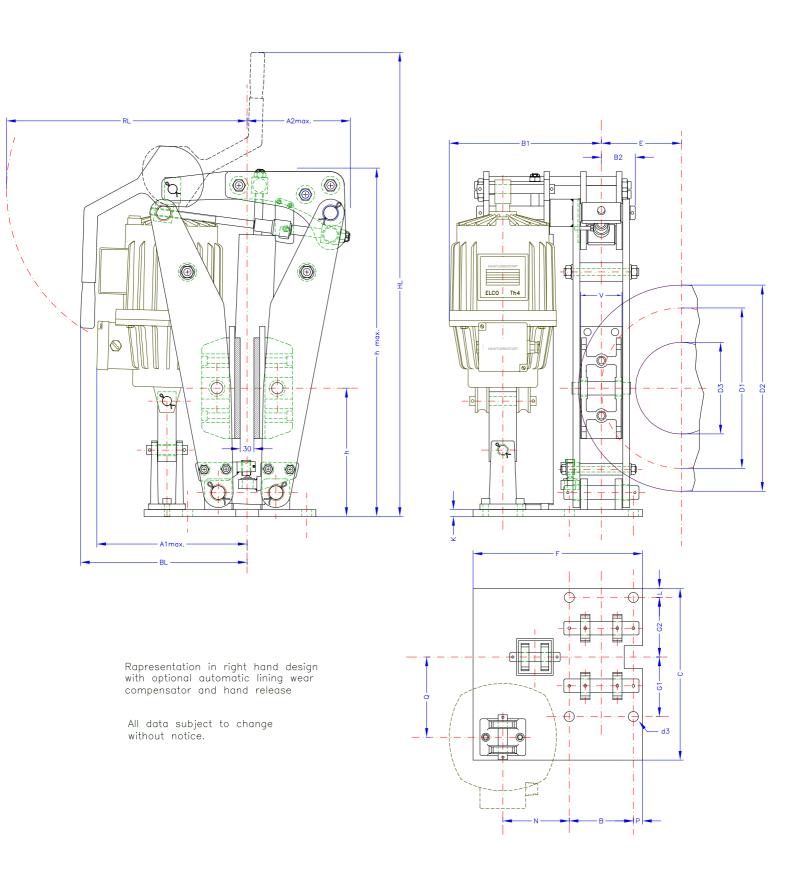
St-brake with Pneumatic or hydraulic actuator

St-AISE brake to American Standard AISE

Applications


- Heavy duty cranes
- Container cranes
- Conveyors
- Process lines
- Bucket wheel excavators


Features


- All steel production.
- All pivot pins in stainless steel working on self lubricated bushings.
- Surface protection through zinc plating, epoxidic primer and finish paint
- RAL 7031. Other finish colour possible without surcharge.
- Easy removable low cost asbestos-free brake pads which can be quickly replaced without having to remove pivot pins.
- Adjustable brake torque with square spring tube provided with graduated scale.
- Symmetric opening of the brake's arms through a proper device

Options

- Self adjusting device for lining wear with symmetric arms opening device
- "Released brake" limit-switch
- "Brake pad wear" limit-switch
- "Brake pad in sintered bronze
- Hand release lever
- Brake disc with hubs and couplings

DISK BRAKE TYPE ODB

ODB 1

A 2	В	B ₂	С	d з	F	G ₁	G ₂	h	h max	k	L	Ν	Р	Q	S	V
199	120	62	300	18	300	80	80	230	650	15	2	90	20	140	1,1	70
											0					
												Th	nrustor	ELCO Ty	ре	
	Brak	e disc	0									Th1		Th2	Т	h3
D ₂	D ₁	Dз	Е									3raking	g torque	e in Nm at	$\mu = 0$	4
355	275	160	138								(300		450	9	00
400	320	205	160								(350		500	10	000
450	370	255	185								4	100		550	11	00
500	420	305	210								4	150		600	12	250
Weigh	t brake	withou	ıt thrus	tor Kg.62						Dime	nsio	ns dep	ending	on thrusto	or size	

	100	00	12	00						
Dimensions depending on thrustor size										
A 1	253	274	286							
max										
B ₁	221	234	251							
HL	880	961	961							
RL	414	506	506							
BL	277	324	324							

ODB 2

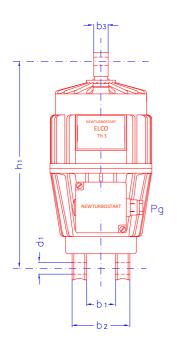
A 2	В	B ₂	С	d з	F	G ₁	G ₂	h	h max	k	L	N	Р	S	V
225	140	75	375	22	370	130	130	280	800	15	20	145	20	1,1	90
												Thru	stor ELC	О Тур	e
	Bra	ke disc									Т	h3	Th4		Th5
D ₂	D ₁	Dз	Е								Brak	king to	rque in N	lm at p	$\mu = 0.4$
450	350	200	175								14	-00	2800	4	1650
500	400	250	200								15	50	3100	Ę	5150
560	460	310	230								17	'50	3450	Ę	5800
630	530	380	265						_		19	50	3900	(6500
710	610	460	305								22	200	4400	7	7350
Weigh	nt brake	without	thrustor I	Kg.111						Dimensior	is depe	ending	on thrus	stor siz	ze
									A 1	max	32	7	348		377
										B ₁	31	1	332		354
										I L	108	38	1020		1276
										₹L	54	0	542		746
										21	35	Ω	271		/12

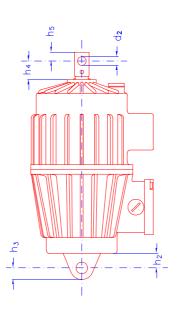
ODB 3

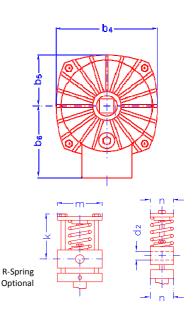
A 2	В	B ₂	C	d 3	F	G ₁	G_2	h	h max	k	L	N	2	Q	S	V
235	160	95	460	27	410	180	180	370	1050	20	50	155	30	195	1	120
					•							Th	rusto	r ELCO	Гуре	
	Brak	e disc										Th	5		Th 6	
D ₂	D ₁	D ₃	E]							В	raking	torqu	e in Nm	at μ =	0,4
630	500	310	250									670	0		10000)
710	580	390	290									755	0		11300)
800	670	480	335]								850	0		12750)
1000	870	680	435]								1060	00		15900)
1250	1120	930	560									1330	00		19900	

Weight brake without thrustor Kg.220

Dimensions in millimeters


D₁ theoretic friction diameter


S air gap


Further	dimensions
A ₁ max	395
B ₁	372
HL	1525
RL	745
BL	418

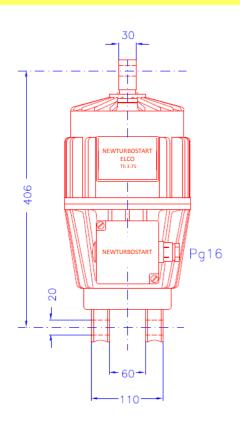
Function:

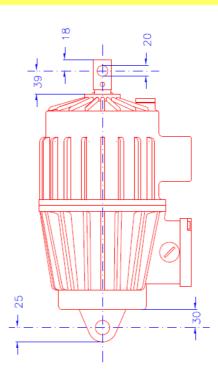
Electro-hydraulic thrustor ELCO combines in a coaxial unit all the basic elements of a hydraulic system: electric drive motor, hydraulic pump, cylinder with piston. So it is designed to exert outwards a straight-line, smooth, constant force for a specific stroke.

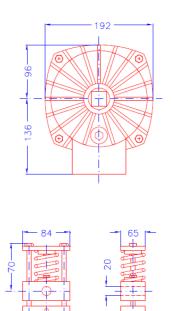
	b1	b ₂	b 3	b4	b 5	b 6	d1	d2	h1	h2	hз	h4	h ₅	k	m	n	Pg
Th 1	40	80	20	142	71	106	16	12	286	20	16	26	12	64	62	32	11
Th 2	40	90	25	168	84	128	16	16	380	25	20	37	15	70	84	65	16
Th 3	60	110	30	192	96	136	20	20	406	30	25	39	18	70	84	65	16

	Th 1	Th 2	Th 3
Lifting force	220 N	300 N	600 N
Stroke	50 mm	50 mm	50 mm
Power input	130 W	180 W	250 W
Rated current at 380 V, 50 Hz	0,3 A	0,4 A	0,5 A
Standard voltage	Three-pha	se 220/380	V, 50 Hz
Service continuous or intermittent up to 2000 switching/h	•		
Filling weight	1,3 Kg	2,5 Kg	3,5 Kg
Weight with filling	7 Kg	12 Kg	14 Kg
In equipment "C" spring force at 1/3 of the stroke	180 N	250 N	500 N

Construction and principle of operation

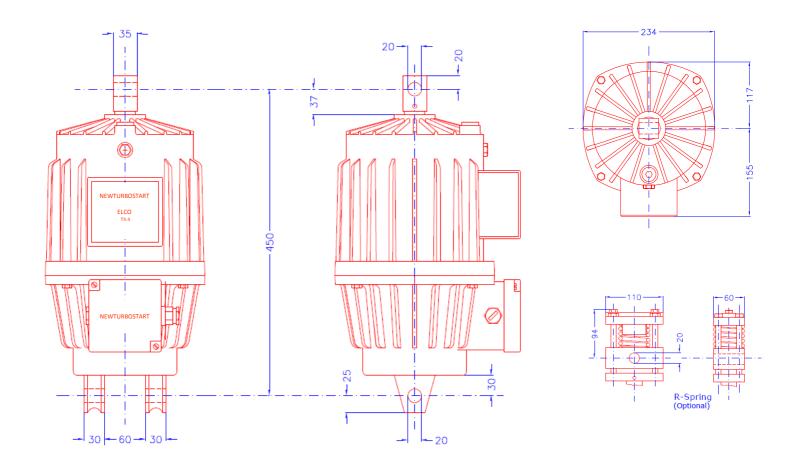

The centrifugal pump impeller coupled to the motor shaft sets up a hydraulic pressure under the piston causing its movement upwards against the external load or against the built-in brake springs.


The oil above the piston is pressed again to the impeller inlet hole through the bypass port. When the motor is switched off, the piston will travel back by effect of external load or inside brake springs. The hydraulic force is nearly independent of piston position into cylinder. The outer load doesn't affect the strain of the motor. If the lifting load overcomes the hydraulic force the piston will not move up, but the electric motor will not suffer any damages. That is a considerable advantage in comparison with magnetic brake thrustor. At lower load the lifting movement becomes quicker and the downward movement becomes slower. The time-load curves are related to rated lifting force.


Applications

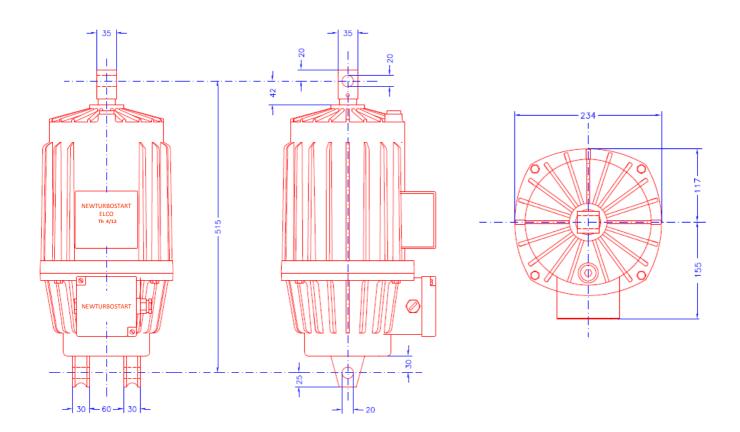
ELCO are mainly employed to operate drum and disc brakes. Nevertheless, they might be used in whatever application requiring a straight-line movement.

MAIN DIMENSIONS ELCO Th. 3.75



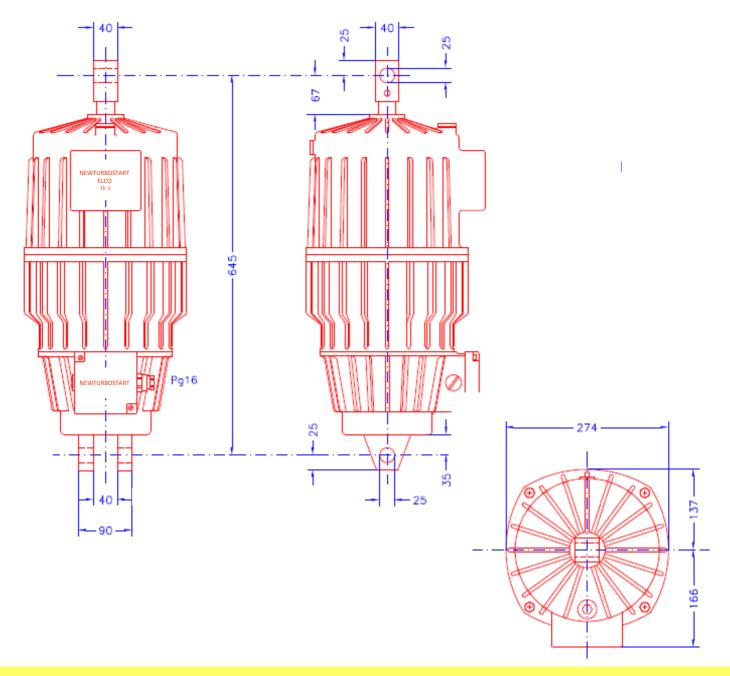
TECHNICAL RATINGS ELCO Th. 3.75

Lifting force	750 N
Stroke	50 mm
Power input	280 W
Rated current at 380 V, 50 Hz	0,6 A
Standard voltage Three-phase 220/380 V, 50 Hz	
Service continuous or intermittent up to 500 switching/h, R.I. 60%	
Filling weight	3,5 K g
Weight with filling	14 Kg
In equipment "C" spring force at 1/3 of the stroke	700 N


MAIN DIMENSIONS ELCO Th. 4

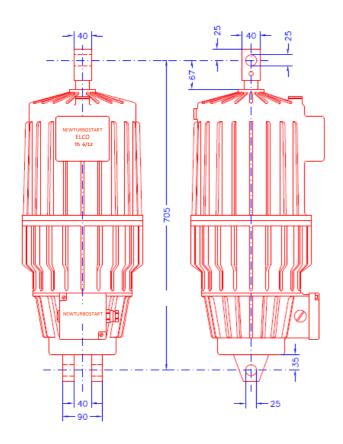
TECHNICAL RATINGS ELCO Th. 4

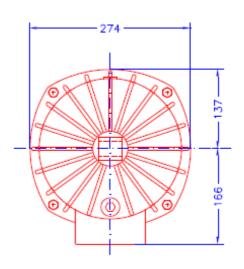
Lifting force	1200 N
Stroke	60 mm
Power input	350 W
Rated current at 380 v, 50 Hz	0,7 A
Standard voltage	Three-phase 220/380 V, 50 Hz
Service continuous or intermittent up to 2000 switching	ng/h
Filling weight	4,5 Kg
Weight with filling	21 Kg
In equipment Th 4 C, spring compression at 1/3 of the	hrustor's stroke 1200 N


MAIN DIMENSIONS ELCO Th. 4/12

TECHNICAL RATINGS ELCO Th. 4/12

1200 N 120 mm 350 W 0,7 A
Three-phase 220/380 V, 50 Hz
ng/h
6 Kg 23 Kg


MAIN DIMENSIONS ELCO Th. 5 - 6



TECHNICAL RATINGS ELCO Th. 5 - 6

	Th 5	Th 6
Lifting force	2000 N	3000 N
Stroke	60 mm	60 mm
Power input	750 W	850 W
Rated current at 380 v, 50 Hz	1,2 A	1,4 A
Standard voltage Three-phase 220/380 V, 5	0 Hz	
Service continuous or intermittent up to 2000 switching/h		
Filling weight	11 Kg	11 Kg
Weight with filling	44 Kg	44 Kg
In equipment with C spring force at 1/3 of the stroke	2000 N	3000 N

MAIN DIMENSIONS ELCO Th. 5-6/12

TECHNICAL RATINGS ELCO Th. 5-6/12

	Th 5/12	Th 6/12
Lifting force	2000 N	3000 N
Stroke	120 mm	120 mm
Power input	750 W	850 W
Rated current at 380 v, 50 Hz	1,2 A	1,4 A
Standard voltage Three-phase 220/380	V, 50 Hz	
Service continuous or intermittent up to 2000 switching/h		
Filling weight	12 Kg	12 Kg
Weight with filling	46 Kg	46 Kg

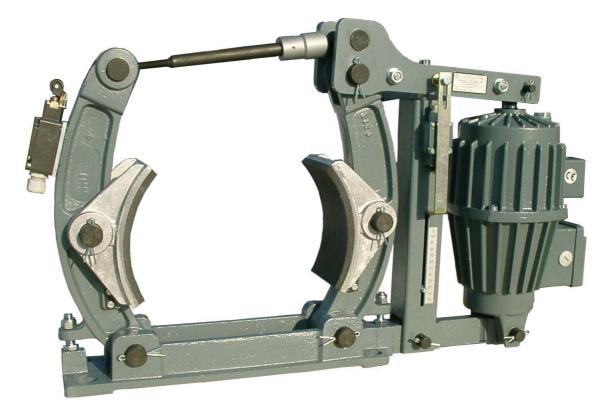
INDUSTRIAL BRAKE - OPTIONAL

Micro-switch signaling "LINING WORN"

It issues an electric signal as the 2 brake's arm approach too much to each other on account of worn linings. It is very useful as it advises, whenever the linings have to be replaced, thus preventing the jaws to damage the drum surface. It is mostly employed along with the automatic lining wear compensator.

Hand release lever

It enables the manual release the brake in power blackout. It is mainly employed to speed up lining replacement or maintenance operations. The symmetric layout of the lever makes easy the release of the brake, without inducing any deflection in the frame work.


Thrustor rotated of 90°

In this layout the thrustor is rotated of 90° versus its bottom hinge. This arrangement may be useful to save space in length direction and is standard in the brake NC315-Th1

Further option:

- Shoes with extended width (1,5 times the standard value) to increase heat dissipation
- Pins and rod in stainless steel for aggressive environments
- Pins provided with grease nipple and grease reserve to enhance lubrication in extremely aggressive environment
- Copper wire fabric linings to prevent sticking of lining at drum surface in particular environment
- Thrustors in HR design (Heat Resistant) for hot metal cranes and rolling mills
- Special hydraulic fill for very hot or frosty environment
- Special tensions and frequencies on demand

INDUSTRIAL BRAKE - OPTIONAL


External braking spring

It is housed into a square tube provided with graduated scale to ease torque setting. External braking spring is an option to the one inside the thrustor and it is utilized in applications requiring braking torque reduction and adjusting, such as horizontal drives without inverter controlling.

Micro-switch signaling "BRAKE RELEASED"

It advises that the brake is duly released. The signal usually lights a led on the operator's push-button panel. Its role is preventing damage caused by using the crane with set brake.

Whenever the brake isn't provided with external braking spring, this micro-switch is mounted on the top of the thrustor.

Control of the contro

(DRAG)

Automatic lining wear compensator

It provides for automatic re-adjusting of shoe clearance. It acts progressively with lining wear through a free wheel device. It is very useful in heavy braking application to reduce maintenance rate. It also maintains the brake at its proper operating torque.

